US 20220197609A1

a9y United States

12y Patent Application Publication (o) Pub. No.: US 2022/0197609 A1

Corvi et al.

43) Pub. Date: Jun. 23, 2022

T
I
’
s
I
¢

(é.g., binary code) 104

Basic Block (n-1)

\ Basic Block n

(54) SYSTEMS AND METHODS FOR Publication Classification
CONVERTING A LEGACY CODE INTO AN (51) Int. Cl
UPDATED CODE GOGF 8/41 (2006.01)
(71) Applicant: Sony Interactive Entertainment LLC, GOGF 12/0802 (2006.01)
San Mateo, CA (US) ¢2) Us. L
’ CPC GO6F 8/41 (2013.01); GO6F 2212/60
(72) Inventors: Ernesto Corvi, San Mateo, CA (US); (2013.01); GOGF 12/0802 (2013.01)
George Weising, Culver City, CA (US); (57) ABSTRACT
David Thach, San Mateo, CA (US) A method for facilitating a play of a legacy game is
described. The method includes receiving a user input
(21) Appl. No.: 17/161,583 during the play of the legacy game, determining whether one
or more blocks of code for servicing the user input are
cached, and accessing one or more instructions of a legacy
(22) Filed: Jan. 28, 2021 game code upon determining that the one or more blocks of
code are not cached. The method further includes compiling
o the one or more blocks of code from the one or more
Related U.S. Application Data instructions of the legacy game code, caching the one or
(60) Provisional application No. 63/130,241, filed on Dec. more blocks of code, and executing the one or more blocks
23, 2020. of code to display a virtual environment.
e N
(oo T TSI T .'|
: :
/'I Basic Block 1 !
i 1
1 1
Legacy CPU Code ! !
; i ‘
|_i»| Basic Block 2 :
1 i
Emulated . . / h 1
106 ~_| PU »| Basic Block Compiler/ i . |
Generator . i
Code \ i . i
i i
1
1 1
1
1
1
i
1
1
1
1
i
1

d

160

(Block Interpreter)

US 2022/0197609 A1

Jun. 23,2022 Sheet 1 of 27

Patent Application Publication

m 700 9y%e) |

u %o0|g oIseg 4,_,/

(1-u) yoo|g diseq

gooigoseg T |

]
| ¥00|g JIseg rd

(49381d133u] ¥o0Ig)
| 'Ol

001

e

- (ep09 Ateuiq .m.m_vv

'
’
4
4
]
]

- Nnd
f181dwo) %209 dIseq paje|nwg

/ r— 9poo

4
4
]
1

apo) Nd)H AoebaT

US 2022/0197609 A1

Jun. 23,2022 Sheet 2 of 27

Patent Application Publication

(swuny)

¢ Ol

A 4

A90(q A90(q
1xau < Jxau 8y}
ay) ayoen ajeauab/a|dwo)
((]
80¢ 902
ON

(4114

¥90[q }xau
8y} yajedsiq

¢ payoed

300[q
1XaU 8|

A

SO

y0¢

002 \\

Patent Application Publication Jun. 23,2022 Sheet 3 of 27 US 2022/0197609 A1

/ 300

104

Decodes a group of emulated PU opcodes and
Basic Block translates them into optimized intermediate
Compiler/Generator representation for host PU. Count cycles for the

block.

102

/ Holds compiled basic blocks for fast lookup. Handles
cache invalidation from emulated PU, DMA or self-
modifying code. Marks invalid blocks for self-verification
through block hash.

Cache

302

Executes basic block intermediate representation.
Block Dispatcher Updates emulated cycles based on block’s cycle
count.

FIG. 3

(Components)

US 2022/0197609 A1

Jun. 23,2022 Sheet 4 of 27

Patent Application Publication

707 9|0SU0?) duwies)

ayoen

(09) |—

J

Ja|idwon

4001d
aiseq

c0l gL

LWBISAS 105530014 UONEINWT

(ajosuo awen) 03 NOb peojumo()

Vv 'Ol

\ 00¥

viv

CRITET
Kowiapy

()

fA
|

YIOM)ON
Jandwo)

60¥ S

WEL)

o A

NNT\._@

N[

Ldlesn

o

29) 19

1137

-

aulyoepy Loeban

US 2022/0197609 A1

Jun. 23,2022 Sheet 5 of 27

Patent Application Publication

N [
Lalesn
. wmmﬁ
1414

(sawea4 abew) Aejdsiq)

gy Old

A ANG
YIOMION
«/ ey Jaindwo)
N « o | Jasq
oy—" AN | 20
«—<_—0CY
- F0¥ WajsAg Jonls
NOT 0% WaISAS J0SS990.d POy WISAS JONISS
[7oveyoep JOpENT
1 "
) m u 20|g JIseq m N:,//

[} [
“ . “ y01
" . I /ﬂ 391n9g Aowdy
! “
i | zwoigoseg |1
m 1€ Jojdwon) yooig Iseq NoB
' Lyooigaiseg |
Bp—— “

US 2022/0197609 A1

Jun. 23,2022 Sheet 6 of 27

Patent Application Publication

-

9yoe9 0} pakay u ssaippe pug - -~

(syo0]q d1segq)

VS 'Ol

U $8J949 JO "ON
u uonesadp

U ssalppy Jalsibay uoneunssq

U SSappy Jasiboy 82in0g
U SHejA plenul

-

9yoeo 0} pakay| U ssaippe ueyg --~
U %90]q AJUSA 0} 818 PaLIaSUI U %20]q YOOH \

u yo0|g diseg

-

Z ssalppe pug ==~

¢ SSaIppe LS /..

Z S9J042 JO "ON
Z uonesadp

Z Ssalppy Jasibay uoneunssq

Z Ssalppy Jasibay 99103

Yo 0} pakey | SSaIPpe pug ~

~
~
-

¢ ¥20ig diseq

(uinjau ‘epinlp “‘Aidynw 9oeAgNS
‘ppe ‘aledwod ‘eyum ‘peod ‘youelq ‘dwnp “69) - ———

| $9]942 JO "ON

|||||||| ~~ | uonesadQ

| Ssalppy Jalsibay uoneunssq

| sSalppy Jajsibay 82.n0g

9yoeo 0} pakay | ssaippe ueyg ==~ "

| ¥90ig Jiseq

%90(q
$950|9)
/

1

U 490[q
9Iseq
0} dwn(
uey

US 2022/0197609 A1

Jun. 23,2022 Sheet 7 of 27

Patent Application Publication

pasn
10U S}IQ Ysew

B SHO B YIS

~
~
~
~

SHq (AT

./

s)q 9 “u uopesado

7
1]
[}

1 “-ussaippy Jesibay uoneunssq

. U ssaIppy JejsiBay 90in0g

ﬂ_g..u mjo0jg J15eg

g¢ Old

<+—— 9)ldwo) «—

-
shqq -

Siqe--

05§ SNq 9.,

.x ,

-

\|\ uonesado

.- I\ SS2IppY UONeulss(

I\ SSaIppYy 89IN0g

W uondonAsy|
9P0D Nd Peje|nws

US 2022/0197609 A1

Jun. 23,2022 Sheet 8 of 27

|\ uononasuy|
9poD
Nnd
60% pejeinwy
WaJSAG J0SS8901d Uone|nW3 3] Jsydedsig
) ¥00|g [-20¢
207 ayoe .
201 9ydxe) 209 :
) .
(F0T Jopdwon yooig o1seq
U 00/g dised R Japeay 2 uoonAsu|
< X001 apo)
. 209 nd
hd / pojenwg
| o0ig 909 709
JIseq < Byoe) le—{ Joear) e Jopooag/iesied [€
%o01g %00|g < ~~l. | uononysuj
NJ9 4 [9pon
nd
psjeinwy
L Induj Jesn __NoB

Patent Application Publication

Patent Application Publication Jun. 23,2022 Sheet 9 of 27 US 2022/0197609 A1

652

-
-

User
input
received
?

e * block & do not
identify an instruction

Yes

654 _
By Block Dispatcher--

A

Isa
basic block(s)

to service the user input Run the basic block(s)
cached
By Block Creator 656

No

658 | Identify an instruction from an
emulated PU code to service [...By Parser
the user input

650 J 660\ Compile

the instruction(s) to - By Block Creator
generate a basic block(s)

662 l

Run the basic block(s)

“.--By Block Dispatcher

FIG. 6B

(Method for Dynamically
Compiling Basic Block(s))

US 2022/0197609 A1

Jun. 23,2022 Sheet 10 of 27

Patent Application Publication

[4

(=]

F 84oe)

2 400/g dIseg

(s)no0ig oiseq

<€

alIdwo) @

| ¥90/g dI1Seq

payoeo sl | SQCL_ Jasn

<€

c0¢

Jayajedsiq
A90Ig

A

®
®

0} Buipuodsaliod ¥o0iq 21Seq Ji Y98y9 @ _

O,

zZ induj Jasn

O

Jajdwo)
190/ diseg

J9 OId

ZI¥ 92188 Aloway

01 9P0J NNd pejeinwiy

Z uononisuy|
3p0)
Nd
pajeinw3

40

| Induj Jasn

0.9 \

yol

©|©

| uononisu|
9p0)
Nd
pajenw3

Patent Application Publication

Jun. 23,2022 Sheet 11 of 27

US 2022/0197609 A1

/ 700

Block Instructions
Creator Remover
604 702

FIG. 7A

Are
all
instructions of
emulated PU code
compiled

Emulated PU Code
Instruction 1

Emulated PU Code
Instruction 2

Emulated PU Code
Instruction M

Emulated PU code 106

2

Memory Device 412

2

122

720
/-

l

Retain the emulated 126
PU code

Delete the emulated PU
code

FIG. 7B

US 2022/0197609 A1

Jun. 23,2022 Sheet 12 of 27

Patent Application Publication

(uonepijep)

V8 Ol

708

[4

(=]

| ®YoeD

Jabbe|q
%o0|d

208

m

U %2019
aiseq

10)epleA
300lg

¢ 001d
aiseq

A

»

08 Wa)SAS J0SS80014 UOIRINW

| Y0019
aIseg

NANn
Jayoedsig
49019
$07 Jo)dwo) yooig oiseg
909 709 0
<09
w m —
Jayoe) Jojealn Japods(
¥oo|g 30019 J19s1ed

Patent Application Publication Jun. 23, 2022 Sheet 13 of 27 US 2022/0197609 A1

/- 850

Is
a
basic black

cached
?

No

852

Create a 15t hash from instructions of
/ emulated CPU code in memory addresses
854 accessed to compile the basic block

Are
the instructions at
the memory addresses

overwritten
?
856

y y

Mark the basic /860 Do not mark the basic /353
block invalid? block invalid
To Fig. 8C To Fig. 8C

FIG. 8B

Patent Application Publication Jun. 23, 2022 Sheet 14 of 27 US 2022/0197609 A1

To Flig. 8B To Flig. 8B

862

Is
the basic block
to be

executed
?

No

864

Is
the basic
block marked
invalid?

'

Hash the instructions again & 866
compose w. the 15t hash Execute the |/

868
Is

the basic > basic
block valid block
?
870 'y
Remove
No Yes > the
mark
872 Recompile the basic ~ -§-~----- - From another set of
) block memory addresses

FIG. 8C

US 2022/0197609 A1

Jun. 23,2022 Sheet 15 of 27

Patent Application Publication

(W1GSd ‘wivSd “679) -~

(VNG Joy smojje ‘qSs “69)

g6 Old

(n12Sd ‘witSd “69) -~

0¢6

| _..auiyaep pajepdn
0¢6

/) \.va

................ walshg > Nd9

Aows|y $S900Y
/] 91080 SOSSAOIE 15| -~
926 me L

26

Vs ya

Ve ayoen il o > Ndd

876 4 e
9oB) S9SS9IL 15|, -
J--- suyoepy Aoeba

¥06

P apo) ya

90— Nd Pejeinu3 149
SS90y _ ’ Aoeba
991A9(] i)
syoeooN | Kiowsyy
X $S900Y Vs 206
i)
906—"
H Ndo
Aoeba
aALQ WoY¥-a9
806—"

US 2022/0197609 A1

Jun. 23,2022 Sheet 16 of 27

Patent Application Publication

(poyesbaju| uononsysuy
aweg 10} sy20|q d1segq)

Vol "Old

¢ ndui Jasn S ——— | %00|q oiseg

Jajdwo) yooig Ag -~ -

1

| %901 JISEq
OJul Z puB |, S§90[q 2Iseq alelbaju|

1

¢9ng|ele |D
UONBIUSLIO 38U} PUB | d

uomisod 8y} Je sejerul
108[q0 [enyin 69 -~

| oAl B R LD

UORBBLIO LB g |d
uomsod e Je sajenul
108[q0 [enyin <69 -~

AT
/f: N

uonoNSu|

- ndui Jes —————> 20|g J1Se —>
Z Induy ses 2 o0ig d1seg 5005 (g
pojenuwg

. ’

. L) UONBUSLIO UB PUe |4 uonisod e je

. 109[GO [eNuIA S}enIUl O} UORONASUI SWRS ---==2]

| 19n91] co_zwbmc_
. obidusesn | 1 ypoigoses | gnogng
pajeinw3

US 2022/0197609 A1

Jun. 23,2022 Sheet 17 of 27

Patent Application Publication

(¥o0]q 21seq Jo uonedyIpoyy)

g0l OId

(usa19s Ae|dsip 10 SapI|s Jiey-ss040 ‘Buluoxdal pesp ou “69) -~~~ -}

\ 0201

nduy
UoREOLIPON
¥20 F\
Jayoiedsiq 300|g 9oBLBJU| ¥00|g
20t | 201" |
€01 9yoe)
\ 4 \ 4
U)20|g o1seg U o019 91528
PSYIPO D I—
(usauos Ae|dsip J0 abpa WOy YoBq S82UN0Q JIBY-SS010 ‘Buluoyoal pesp “6Ha)

US 2022/0197609 A1

Jun. 23,2022 Sheet 18 of 27

Patent Application Publication

(z 1ono] e 10810

(sugnouqng dnyg)

J01 Ol

[ENLIA JO UORONASSP
s196611 “H9) —»

4

nduyj Jasn

L 3] | o0/g dIseq

(1 uoneyaLo ¥ | uonisod Je pajealsdal s1399lqo enuia “6-9) ----.

(1 [9n9] 18 51980 [enuiA JO
uononsap s1ebbuy “69)

-
~

————

\cmcv

Z uononJsu| apoy
Nd pajejnu3

¢
%90|9
oIseg

|
aunnoigng

(pakonsap s1198lqo [enuin “69) -

A

| indujsesn p——» ¥oo|g

oIseg

Y
]
]
A

|
uononsy|

9p0D Nd PekeNwy

US 2022/0197609 A1

Jun. 23,2022 Sheet 19 of 27

Patent Application Publication

(uoiuasu| ¥20|g)

aot Oid

PIO-~-.

papiasu| -

(sayissiw yym o[193yby € Jo pesysul
pasn aq ues unb Jase| e yum ol
18)ybiy e yaiym 1e [ans| e yoojun “6-s)

llllllll

[4

(=

[L)

¢ 00|g dIseq

L7} %9019 dI1Sed

\32

|yoigoseg e |

Jndu| uogeayipop
_zv01
2084108 [N\,
Y
| %00/g dised

US 2022/0197609 A1

Jun. 23,2022 Sheet 20 of 27

Patent Application Publication

0501

(uonnoaxg Jo 19pIQ YoUMS)

Jndu| uoReIIPOY
2501 |

9B L8| %00|g
[AAl F\

301 "Old

:

:

[4

(=]

| ®YoeD

| %9019 d1Seg

uonNI8Xa Jo JapIQ a,

¢ 001g dIseq

¢ 00|g dIseq

A”_ UORN23Xa JO _meoa,

| %019 JI15ed

Patent Application Publication Jun. 23, 2022 Sheet 21 of 27 US 2022/0197609 A1

[-1100

662
Run a basic block L

l

Count a number of cycles of execution of /1102
the basic block

l

Store the number of cycles in 1104
the basic block

same basic block

to be executed again
?

To Fig. 11B

FIG. 11A

Patent Application Publication Jun. 23, 2022 Sheet 22 of 27 US 2022/0197609 A1

To Fig. 11A

Did
the basic block
finish execution within a pre-
determined limit
from the
no. of cycles?

l l

Do not trigger a notice Trigger a notice
1112 1110

FIG. 11B

US 2022/0197609 A1

Jun. 23,2022 Sheet 23 of 27

Patent Application Publication

(99100 Judy) Joyjouy oleli—J 90z} ~
0} $)90|g J1skeg JO J9jsued]) OIN
. 2021 _ WaIskg 1474}
A E| 10559003
N uone|NW .¢|uvnn
744} 80z 812l 9]0SU07) aules Aluﬂ;
D) (
senbay UD [eee
' NS Y021 —~—
A9 29 19
L 701 9yoe) Z0¥% 9|0Su0y) swes)
o HoMjoN oS R
WeIshS 19ndwo? | . !
JETTENS ! . !
_ . | 60v 601
I [}
m U 300|g 9Iseg m ,/ ,/
! “
wajsh apo
® m zwojgoseg | ! _owwwoom g e m n_o
' m uonenwg pejenw3
1| 1opoigoseg |
L |
00ZL S @? oN [-uz
A

ZJosn

ciel mW

| Josq

:

US 2022/0197609 A1

Jun. 23,2022 Sheet 24 of 27

Patent Application Publication

€l Ol

) SIOMIAN 1937 eleq
0zel cogl
{ {
svel svel
e W [T o S IR
9pel 10 ‘4Sd ‘€Sd)

ccel

0cel

(D

<«— O0opiA |

<«—{_opny |
8cel

0vel

19puaYy/apo2a(

<
vesh

pajdAious sieeq

<] o_ﬁ_mx “
vZel

<«{{ oopIn |
gIEl

< opny |

4

\V,

pajdAious si eleq

ceel

Janiag buiwes

!

—{_o8pl |
Sjayoed YJOMBN 9I€l Sjoyoed YOMIBN ~ ZIS1 P
ap099(/ap0oou] odsuel 9p023(1/2poduT |et—{ OIPNY |
HodswelL 0T
apooug/ainyde)
(414" S
<[00 s0¢t
JOJUO
3 4 4
9z¢el 0s€l vigl

(o

L[]

90¢L YOS

US 2022/0197609 A1

Jun. 23,2022 Sheet 25 of 27

Patent Application Publication

£0v - ol
W~ = e:/ﬂ.\.lv [o8O 1]
N I G d
m - ¥30v3 LGS
m oy —T NS A S, N Qdv0 ™~ g}
“ | - —~ | asn AV
: J
1 { H
| 2hl “
o -] 2000 13N¥3H13
m \ 7 !
L0 | can m
_ _
o1l i M
== XS H08S3004d T130 NYHaX aﬂ N
Wk / /
5 iy, O0enl 92h HLOOL3N g
) m Y
m bl “

US 2022/0197609 A1

Jun. 23,2022 Sheet 26 of 27

205"

s asn 000500 N0,
SHOSNIS0I8 ao| 0RO EIELO VU SN
wsL—"
NOLLYDINNAINOD
w1 INOSWILIN 9251 —" el e I T
SO NOILO3L3a
wi MR 7o, ¥O¥a0R TL0vL NOILOW 318.40d .
N
95— NOLLYOINNAINOD asi— INOHdOLIIN A3L1ve - 9051
0zs1—"1 SHINYILS AV1dSId - 0S|
w1 HLOO3ME n] PEAYOHLAC ASONIN 70l
4 P NE LA H0SSI00Md |~ ATISI]
7
2651 95} W q3iNnonraYaH

Patent Application Publication

US 2022/0197609 A1

Jun. 23,2022 Sheet 27 of 27

Patent Application Publication

0

91 "Old

2091—"

\/\\

¢3QIA0Yd F0IAE3S NOILYINHOANI

YHOMLIN
909} —"1
- AY1dSIQ)
ol
£-029L—"
. AY1dSIC)
g —1— Y
- AY1dSIC)
10291 —" ol

8191

209"

JONYHOX3
viva

430d1A0dd
SNOILYJINNWINOD

g3dIA0¥d
ENISEN
JOVH0LS

430dIA0¥d
ONISS3004d
18¥0dvOoud

430d1A0dd
ONISS3004d
YO

g3dIA0Yd
FOIAS3S
NOILYOI1ddV

~4

[
d3dIA08d FOIAE3S NOILYIWHOANI

~ 9191

~ 7191

~ 2191

~ 0191

~ 8091

US 2022/0197609 Al

SYSTEMS AND METHODS FOR
CONVERTING A LEGACY CODE INTO AN
UPDATED CODE

CLAIM OF PRIORITY

[0001] The present patent application claims the benefit of
and priority, under 35 U.S.C. § 119, to provisional patent
application No. 63/130,241, filed on Dec. 23, 2020, and
titled “SYSTEMS AND METHODS FOR CONVERTING
ALEGACY CODE INTO AN UPDATED CODE”, which is
incorporated by reference herein in its entirety.

FIELD

[0002] The present disclosure relates to systems and meth-
ods for converting a legacy code into an updated code.

BACKGROUND

[0003] As electronic gaming and networking technologies
have become more advanced, the complexity of games has
increased accordingly. As a result, there may be more
complex storylines, game play objectives, missions and
tasks, capabilities associated with game play avatars, and
scoring. Scoring may occur and be weighted in various ways
and likewise be determined in various categories or on an
individual or team basis.

[0004] The significance of the aforementioned problems
only increases as the complexity of electronic games
increases. As such, some players may wish to play older
games, which are less complicated.

[0005] It is in this context that embodiments of the inven-
tion arise.

SUMMARY
[0006] Embodiments of the present disclosure provide

systems and methods for converting a legacy code into an
updated code.

[0007] Inoneembodiment, a method for facilitating a play
of a legacy game is described. The method includes receiv-
ing a user input during the play of the legacy game,
determining whether one or more blocks of code for servic-
ing the user input are cached, and accessing one or more
instructions of a legacy game code upon determining that the
one or more blocks of code are not cached. The method
further includes compiling the one or more blocks of code
from the one or more instructions of the legacy game code,
caching the one or more blocks of code, and executing the
one or more blocks of code to display a virtual environment.
[0008] In an embodiment, a computing device for facili-
tating a play of a legacy game is described. The computing
device includes a processor configured to receive a user
input during the play of the legacy game. The computing
device further includes a cache coupled to the processor and
a memory device coupled to the processor. The processor
determines whether one or more blocks of code for servicing
the user input are stored in the cache. The processor
accesses, from the memory device, one or more instructions
of a legacy game code upon determining that the one or
more blocks of code are not stored in the cache. Also, the
processor compiles the one or more blocks of code from the
one or more instructions of the legacy game code. The
processor stores the one or more blocks of code in the cache
and executes the one or more blocks of code to display a
virtual environment.

Jun. 23, 2022

[0009] In one embodiment, a method is described. The
method includes generating a first validation result from one
or more instructions of a legacy game code. The one or more
instructions of the legacy game code are associated with one
or more blocks of code. The method further includes exam-
ining one or more memory addresses associated with the one
or more instructions to determine whether the one or more
blocks of code are to be marked as invalid. The method
includes determining whether the one or more blocks of
code are to be executed, and determining whether the one or
more blocks of code are marked as invalid upon determining
that the one or more blocks of code are to be executed. The
method includes examining the one or more memory
addresses to generate a second validation result from the one
or more instructions, comparing the first validation result
with the second validation result to determine whether the
one or more blocks of code are invalid, and recompiling one
or more additional blocks of code associated with the one or
more instructions upon determining that the one or more
blocks of code are invalid. The method includes executing
the one or more additional blocks of code to display a virtual
environment.

[0010] Some advantages of the herein described systems
and methods for converting the legacy code into the updated
code include allowing functionality of the legacy code to be
executed by an updated machine. Without the conversion,
due to security issues, the functionality of the legacy code
cannot be executed by the updated machine. For example,
there is no permission to execute the legacy code from the
updated machine and write data generated upon execution of
the legacy code to registers in the updated machine. As such,
by providing the conversion, the execution of the function-
ality of the legacy code by the updated machine is facili-
tated.

[0011] Further advantages of the herein described systems
and methods include saving time of execution. As an
example, two or more instructions, such as a routine and a
subroutine or two similar instructions, of the legacy code are
combined into one basic block of the updated code. As such,
execution of the updated code is faster compared to execu-
tion of the legacy code.

[0012] Additional advantages of the herein described sys-
tems and methods for converting the legacy code into the
updated code include recompiling one or more additional
basic blocks of the updated code upon determining that one
or more basic blocks of the updated code are invalid. For
example, when the one or more basic blocks are marked as
invalid, it is determined whether the one or more basic
blocks are actually invalid. Upon determining so, instead of
executing the one or more basic blocks, the one or more
additional basic blocks are compiled and executed. The one
or more additional basic blocks correspond to the same
game to which the one or more basic blocks correspond.
[0013] Yet further advantages of the herein described
systems and methods for converting the legacy code into the
updated code include that all of the basic blocks do not need
to be checked for invalidity. For example, only those basic
blocks that are marked as invalid after compiling the basic
blocks are checked for validity. This reduces latency in
displaying a virtual environment from the one or more basic
blocks. Also, processing power used for checking all of the
basic blocks for invalidity is not needed.

[0014] Also, advantages of the herein described systems
and methods for converting the legacy code into the updated

US 2022/0197609 Al

code include saving processing time and processing power
when the updated code for a game is already compiled. Once
the updated code is generated at a server or at a game
console, the updated code need not be recompiled. Rather,
the updated code can be transferred from the server or the
game console to another game console. As such, processing
time and processing power in regenerating the updated code
at the other game console is saved.

[0015] Other aspects of the present disclosure will become
apparent from the following detailed description, taken in
conjunction with the accompanying drawings, illustrating by
way of example the principles of embodiments described in
the present disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

[0016] Various embodiments of the present disclosure are
best understood by reference to the following description
taken in conjunction with the accompanying drawings in
which:

[0017] FIG. 1 is a block diagram to illustrate an embodi-
ment of a system for generation of basic blocks of an
updated code.

[0018] FIG. 2 is a flowchart to illustrate an embodiment of
a method for compiling and executing a basic block of a
game code.

[0019] FIG. 3 is a block diagram to illustrate an embodi-
ment of a system for compiling and executing the basic
blocks.

[0020] FIG. 4Ais a diagram of an embodiment of a system
to illustrate compiling of the basic blocks within a game
console.

[0021] FIG. 4B is a diagram of an embodiment of a system
to illustrate compiling of the basic blocks within a server
system.

[0022] FIG. 5A is a diagram to illustrate an embodiment of
a basic block.

[0023] FIG. 5B is a diagram to illustrate an embodiment of
a compile operation performed by a basic block compiler.

[0024] FIG. 6A is a diagram of an embodiment of a system
to illustrate components of the emulation processor system.
[0025] FIG. 6B is a flowchart to illustrate an embodiment
of a method for compiling and executing the basic blocks.
[0026] FIG. 6C is a diagram of an embodiment of a system
to illustrate that for different user inputs, different basic
blocks are compiled dynamically.

[0027] FIG. 7Ais a diagram of an embodiment of a system
to illustrate deletion of an emulated processing unit (PU)
code from a memory device.

[0028] FIG. 7B is a flowchart to illustrate an embodiment
of a method for deleting the emulated PU code from the
memory device.

[0029] FIG. 8A is a diagram of an embodiment of an
emulation processor system to illustrate validation of basic
blocks.

[0030] FIG. 8B is a flowchart of an embodiment of a
method to illustrate a validation operation performed by the
emulation processor system of FIG. 8A.

[0031] FIG. 8C is a continuation of the flowchart of the
method of FIG. 8B.

[0032] FIG.9A is a diagram to illustrate an embodiment of
a legacy machine.

[0033] FIG. 9B is a diagram to illustrate an embodiment of
an updated machine.

Jun. 23, 2022

[0034] FIG. 10A is a diagram of an embodiment of a
system to illustrate combining of multiple basic blocks into
one basic block by a basic block compiler.

[0035] FIG. 10B is a diagram of an embodiment of a
system to illustrate modification of one or more of the basic
blocks.

[0036] FIG. 10C is a diagram of an embodiment of the
system to illustrate combining of a basic block created based
on a subroutine with a basic block generated based on an
emulated PU code instruction, which calls the subroutine.
[0037] FIG. 10D is a diagram of an embodiment of a
system to illustrate an insertion of a basic block between two
basic blocks.

[0038] FIG. 10E is a diagram of an embodiment of a
system to illustrate a switch in an order of execution of basic
blocks.

[0039] FIG. 11A is a flowchart of an embodiment of a
method to illustrate use of a count of a number of cycles
stored in the basic block n.

[0040] FIG. 11B is a continuation of the flowchart of the
method of FIG. 11A.

[0041] FIG. 12 is a diagram of an embodiment of a system
to illustrate a transfer of the basic blocks from a first client
device to a second client device.

[0042] FIG. 13 is a flow diagram conceptually illustrating
various operations, which are performed for streaming a
cloud video game to a client device, in accordance with
implementations of the present disclosure.

[0043] FIG. 14 is a block diagram of an embodiment of a
game console that is compatible for interfacing with a
display device of a client device and is capable of commu-
nicating via a computer network with a game hosting
system.

[0044] FIG. 15 is a diagram illustrating components of a
head-mounted display (HMD).

[0045] FIG. 16 illustrates an embodiment of an Informa-
tion Service Provider (INSP) architecture.

DETAILED DESCRIPTION

[0046] Systems and methods for converting a legacy code
into an updated code are described. It should be noted that
various embodiments of the present disclosure are practiced
without some or all of these specific details. In other
instances, well known process operations have not been
described in detail in order not to unnecessarily obscure
various embodiments of the present disclosure.

[0047] FIG. 1 is a block diagram to illustrate an embodi-
ment of a system 100 for generation of basic blocks 1
through n of the updated code, where n is a positive integer.
The system 100 includes a cache 102, a basic block compiler
104, and an emulated processing unit (PU) code 106 of a
legacy game N having a game title GN, where N is a positive
integer. As an example, a cache, as used herein, is a
hardware or software component that stores data so that
future requests for the data can be served faster. A cache hit
occurs when requested data can be found in the cache, while
a cache miss occurs when it cannot. The cache hits are
served by reading data from the cache, which is faster than
re-computing a result or reading from a slower data store,
such as a memory device, thus, the more requests that can be
served from the cache, the faster a system performs. To
illustrate, a cache is a group of registers, which can be
accessed faster, such as by 10 to 100 times, compared to a
main memory device.

US 2022/0197609 Al

[0048] As an example, a cache has a lower number of
memory addresses than the main memory device. In the
example, a processor first determines whether data used in
an operation is stored at a memory address in the cache and
if not the processor accesses memory addresses in the main
memory device to look for the data.

[0049] As an example, a basic block compiler, as used
herein, is a computer program that converts the emulated PU
code 106 code into a game code GCN, which is an example
of the updated code. The game code GCN represents func-
tionality of the legacy game N. The computer program is
executed by one or more processors of an emulated proces-
sor system. The game code GCN is sometimes referred to
herein as an intermediate code. As an example, the inter-
mediate code is neither a source code nor a machine code.
To illustrate, the intermediate code includes basic blocks that
are not specific to an architecture of a central processing unit
(CPU) or an architecture of a graphical processing unit
(GPU) of an updated machine, examples of which are
provide below. In the illustration, the intermediate code
includes basic blocks that can be executed by a CPU or a
GPU of the updated machine, examples of which include a
Sony PlayStation™ 4 (PS4™) or a Sony PlayStation™ 5
(PS5™) or a desktop computer or a laptop computer or a
smartphone or a smart television. As an example, the source
code is written using a human readable programming lan-
guage, which can be plain text. As an example, a basic block
compiler, as used herein, is implemented using hardware or
software or a combination thereof. To illustrate, functional-
ity of the basic block compiler is implemented using a
controller or a programmable logic device (PLD) or an
application specific integrated circuit (ASIC).

[0050] Examples of a controller, as used herein, include a
processor and a memory device. The processor is coupled to
the memory device. As used herein, as an example, a
processor is a microprocessor, or a CPU, or a GPU, or a
microcontroller, or an ASIC, or a PLD. Examples of a
memory device, as used herein, include a random access
memory (RAM) and a read-only memory (ROM). To illus-
trate, the memory device is a flash memory device, or a hard
disk, or a solid-state storage device, or a redundant array of
independent disks (RAID), or a combination thereof.
[0051] An example of the emulated PU code 106 is a
machine code that directs a processor, such as a CPU or a
GPU, of a legacy machine to perform an operation. For
example, the emulated PU code 106 includes a sequence of
instructions that instruct the CPU of the legacy machine to
perform a specific operation, such as load, store, jump, or an
arithmetic logic unit (AL U) operation on data stored within
the CPU’s registers. As another example, the emulated PU
code 106 is a binary code that includes a series of ones and
zeros. As another example, the emulated PU code 106
includes a sequence of instructions that instruct the GPU of
the legacy machine to perform a specific operation, such as
load, store, jump, or an AL U operation on data stored within
the GPU’s registers. The GPU of the legacy machine per-
forms an operation on a virtual object to assign a graphical
parameter, such as color, or intensity, or shade, or texture, or
a combination thereof, to the virtual object.

[0052] The emulated PU code 106 is specific or unique to
an architecture of the CPU or the GPU of the legacy
machine. For example, the emulated PU code 106 cannot be
executed by a CPU or a GPU of the updated machine. As
another example, the emulated PU 106 executable on Sony

Jun. 23, 2022

PlayStation™ 1 (PS1) cannot be executed on Sony Play-
Station™ 2 (PS2) and vice versa.

[0053] As an example, the emulated PU code 106 is
executed by the processor of the legacy machine to perform
operations in the legacy game N. To illustrate, the emulated
PU code 106 is executed to play legacy games on the legacy
machine, such as the PS1™ or the PS2™. Examples of the
legacy games include video games, such as, Warhawk™,
Tango Dance Fever™, Castlevania Chronicles™, Pac-
man™, Resident Evil 2™, and Streetfighter Alpha 3™.
[0054] The basic block compiler 104 accesses the emu-
lated PU code 106 for the legacy game N and converts the
emulated PU code 106 into one or more basic blocks, such
as the basic blocks 1 through n. As an example, each basic
block 1 through n has a start identifier and an end identifier
to distinguish one basic block from another. The basic block
compiler 104 stores the basic blocks 1 through n in the cache
102. When the basic blocks 1 through n are executed, the
legacy game N is emulated.

[0055] FIG. 2 is a flowchart to illustrate an embodiment of
a method 200 for compiling and dispatching a basic block of
the game code GCN. The method 200 is executed by one or
more processors of the updated machine. The method 200
includes an operation 202 of determining whether there is a
cache hit, e.g., whether a basic block is stored in the cache
102. For example, the operation 202 is performed or trig-
gered when a user input during a play of a legacy game is
received. To illustrate, the user input is received to change
a position or an orientation or a combination thereof of a
virtual object of the legacy game N. In the illustration, upon
determining that the user input is received, it is determined
whether a basic block, such as one of the basic blocks 1
through n, is stored in the cache 102 (FIG. 1). In the
illustration, the basic block is to be executed to change the
position or the orientation or the combination thereof of the
virtual object.

[0056] As another illustration, the operation 202 is per-
formed when a user input to change the parameter, such as
a look and feel, of a virtual object of a legacy game is
received. In the illustration, upon determining that the user
input is received, it is determined whether a basic block,
such as one of the basic blocks 1 through n, is stored in the
cache 102. In the illustration, the basic block is to be
executed to change the parameter of the virtual object.
[0057] In response to determining that the basic block is
cached, in an operation 204 of the method 200, the basic
block is dispatched. For example, the basic block is executed
or run in the operation 204. To illustrate, the basic block is
run by the CPU of the updated machine to move a virtual
object from one position to another or from one orientation
to another or a combination thereof. As another illustration,
the basic block is executed by the GPU of the updated
machine to assign the parameter to a portion of the virtual
object. An example of a portion of a virtual object includes
a pixel of virtual object or a triangular portion of the virtual
object or a portion of a pre-defined shape of the virtual
object. To illustrate, the virtual object is divided into a
pre-determined number of pixels, and each pixel is assigned
a value of the parameter.

[0058] In response to determining that the basic block is
not cached, an operation 206 of compiling the basic block is
performed in the method 200. The operation 206 is per-
formed by the basic block compiler 104 (FIG. 1). For
example, the basic block compiler 104 parses the emulated

US 2022/0197609 Al

PU code 106 (FIG. 1) for the legacy game N to identify an
emulated PU code instruction that includes a function for
servicing the user input received, before the operation 202,
during the play of the legacy game. The user input received,
before the operation 202, triggers the operation 202. To
illustrate, the basic block compiler 104 traverses through
each emulated code PU instruction of the emulated PU code
106 to determine whether the emulated code PU code
instruction includes an operation, such as a function, to
satisfy, such as generate a response to, the user input
received during the play of the legacy game. In the illustra-
tion, once the function is identified, the basic block compiler
104 converts the emulated code PU code instruction to
generate the basic block. In the illustration, in response to
the user input received, before the operation 202, other
emulated code PU code instructions, of the legacy game,
that are no needed to service the user input are not compiled
into basic blocks by the basic block compiler 104.

[0059] In an operation 208 of the method 200, the basic
block generated in the operation 206 is stored in the cache
102 by the basic block compiler 104. The cached basic block
is then executed in the operation 204 to service the user input
received before the operation 202.

[0060] Inone embodiment, the method 200 is executed by
one or more processors of a server system. As an example,
the server system includes updated machines as servers. To
illustrate, each server blade is the PS4™ or the PSS™,
[0061] In an embodiment, the method 200 is not executed
until a user input is received. For example, there is no
determination whether a basic block, such as one of the basic
blocks 1 through n, is stored in the cache 102, no compiling
of the basic blocks, and no execution of the basic blocks
until the user input is received.

[0062] In one embodiment, the basic block compiler 104
compiles one or more of the basic blocks 1 through n in
response to a first user input during a play of the legacy game
N and compiles one or more of remaining of the basic blocks
1 through n in response to a second user input during a play
of the legacy game N. To illustrate, the basic block compiler
104 generates the basic blocks 1 and 2 to service the first
user input and generates the basic blocks 3 through 7 to
service the second user input. The second user input is
received after the first user input.

[0063] FIG. 3 is a block diagram to illustrate an embodi-
ment of a system 304 for compiling and dispatching basic
blocks, such as the basic blocks 1 through n. The system 300
includes the basic block compiler 104, the cache 102, and a
block dispatcher 302. As an example, the block dispatcher
302 is hardware or software, or a combination thereof, that
carries out operations of one or more of the basic blocks 1
through n to service a user input. To illustrate, the block
dispatcher 302 is a PLD or an ASIC or a controller. As
another illustration, the block dispatcher 302 is a computer
software. As an example, the block dispatcher 302 is the
GPU or the CPU of the updated machine.

[0064] The basic block compiler 104 decodes a portion of
the emulated PU code 106 (FIG. 1), such as an operational
code (opcode), and translates the portion into an intermedi-
ate representation for a processing unit of the updated
machine. For example, the basic block compiler 104 parses
a portion, such as one or more instructions, of a CPU code
of the emulated PU code 106 to determine whether the
portion of the CPU code includes functionality to service a
user input. Upon determining so, the basic block compiler

Jun. 23, 2022

104 translates the portion of the CPU code into one or more
basic blocks, such as the basic blocks 1 through n. As
another example, the basic block compiler 104 parses a
portion, such as one or more instructions, of a GPU code of
the emulated PU code 106 to determine whether the portion
of the GPU code includes functionality to service a user
input. Upon determining so, the basic block compiler 104
translates the portion of the GPU code into one or more basic
blocks, such as the basic blocks 1 through n.

[0065] Also, the basic block compiler 104 estimates a
number of cycles for execution of each basic block gener-
ated from the portion of the emulated PU code 106 to
generate an estimated count. For example, the basic block
compiler 104 determines that the basic block 1 includes a
jump operation and a jump operation takes a pre-determined
amount of time. The basic block compiler 104 estimates that
the jump operation of the basic block 1 takes the pre-
determined amount of time. The block compiler 104 stores
the estimated count in the cache 102. For example, the block
compiler 104 stores the estimated count in the basic block n
for which the number of cycles is estimated.

[0066] Once the basic blocks are compiled, they are stored
in the cache 102 for fast lookup. For example, when another
user input is received after receiving a user input in response
to which the basic blocks are compiled, and the same basic
blocks can be used for servicing the other user input, the
basic blocks can be accessed from the cache 102 quickly and
do not need to be regenerated.

[0067] In addition, one or more of the basic blocks stored
in the cache 102 can be marked as invalid after compilation.
The one or more of the basic blocks, marked as invalid, are
later validated or invalidated during runtime of the basic
blocks. When the one or more of the basic blocks are
invalidated, one or more additional basic blocks are com-
piled. The compilation of the one or more additional basic
blocks is sometimes referred to herein as recompiling of the
one or more basic blocks.

[0068] Each of the one or more additional basic blocks
have the same structure as that of the one or more basic
blocks 1 through n. For example, each of the one or more
additional basic blocks has a source register address, a
destination register address, and an operation. As another
example, each of the one or more additional basic blocks has
a source register address, a destination register address, an
operation, and a number of cycles of execution of the
operation of the additional basic block. In the example, some
of the one or more additional basic blocks include an invalid
mark. As yet another example, each of the one or more
additional basic blocks has a source register address, a
destination register address, an operation, and a number of
cycles of execution of the operation of the additional basic
block. It should be noted that each of the additional blocks
of code is executed in the same manner as each of the basic
blocks 1 through n.

[0069] The block dispatcher 302 executes or runs one or
more of the basic blocks 1 through n based on a user input.
For example, the block dispatcher 302 executes the basic
blocks 1 and 2 to service the first user input and executes the
basic blocks 3 through 7 in response to the second user input.
As an example, the block dispatcher 302 includes a clock
source, such as a digital clock oscillator or a clock generator,
that counts a number of cycles used to execute one or more
of the basic blocks 1 through n based on the user input to
generate a real count. The block dispatcher 302 sends the

US 2022/0197609 Al

real count to the block compiler 104 to update the estimated
count with the real count. For example, the real count is
stored in the basic block n for which the real count is
calculated. To illustrate, the real count is stored in one or
more memory registers of the cache 102 assigned to the
basic block n.

[0070] In one embodiment, the basic block compiler 104
does not estimate the number of cycles for execution of any
basic block. In this embodiment, there is no replacement of
the estimated count with the real count. Rather, in the
embodiment, the real count is stored by the block compiler
104 in the basic block n for which the real count is
determined.

[0071] FIG. 4Ais a diagram of an embodiment of a system
400 to illustrate compiling of the basic blocks 1 through n
within a game console 402. The system 400 includes the
game console 402, a server system 404, a computer network
408, and a display device 410. The server system 404
includes one or more servers. As an example, the server
system 404 is located within a housing of a data center. The
server system 404 includes a memory device 412, which
stores emulated PU codes, such as the emulated PU code
104. For example, the memory device 412 stores a game
code 1 (gecl), a game code 2 (gc2), and so on until a game
code N (gcN). The game code geN is an example of the
emulated PU code 106 (FIG. 1). Each game code 1 through
N is a legacy code of a legacy game. To illustrate, the game
code gcl is a machine code for play of a first legacy game
and the game code gc2 is a machine code for play of a
second legacy game. The second legacy game is different
from the first legacy game. It should be noted that as an
example, the memory device 412 is a memory device of the
legacy machine.

[0072] As an example, none of the game codes gcl
through gcN can be executed in the updated machine and
can be executed in the legacy machine. To illustrate, a CPU
or an operating system of the updated machine cannot
support execution of the game codes gcl through gen. On
the other hand, a CPU or an operating system of the legacy
machine supports execution of the game codes gcl through
gcN. Examples of a computer network, as used herein,
include a wide area and at work (WAN), such as Internet, or
a local area network (LAN), such as an intranet, or a
combination thereof.

[0073] The game console 402 is an example of the updated
machine. For example, the game console 402 is the PS4™
or the PS5™. Examples of the display device 410 include a
television, a smart television, and a computer monitor. To
illustrate, the display device 410 is a liquid crystal display
(LCD) device, or a light emitting diode (LED) display
device, or an organic light emitting diode (OLED) display
device.

[0074] The system 400 further includes a hand-held con-
troller 414, which is held in one or two hands of a user 1.
Examples of a hand-held controller, as used herein, include
a controller with buttons, a Move™ controller from Sony™
Corporation, and a gun-shaped controller. Examples of
buttons of the hand-held controller include joysticks, buttons
for moving a virtual object upwards, downwards, left, or
right on the display screen 410, and other buttons for
selection of various features of the legacy game N having the
game title GN.

[0075] The game console 402 includes a memory device
406 and an emulation processor system 409. As an example,

Jun. 23, 2022

a processor system, as used herein, includes one or more
processors that are coupled to each other. The emulation
processor system 409 is coupled to the memory device 406.
The emulation processor system 409 includes the basic
block compiler 104 and the cache 102. The basic block
compiler 104 is coupled to the cache 102.

[0076] The game console 402 is coupled to the display
device 410 via a wired communication medium, such as a
high definition media interface (HDMI) cable or a wireless
connection. Examples of a wireless connection, as used
herein, include a Wi-Fi™ connection or a Bluetooth™
connection. Also, the hand-held controller 414 is coupled to
the game console 402 via a wired connection or a wireless
connection. Examples of a wired connection, as used herein,
include a serial transfer cable, a parallel transfer cable, and
a Universal Serial Bus (USB) cable.

[0077] An example of a client device includes a combi-
nation of a hand-held controller, a game console, and a
display device. Another example of the client device
includes a combination of a hand-held controller and a
display device.

[0078] The user 1 logs into his/her user account when a
user identification (ID) and a password are authenticated by
the server system 404. The user 1 is assigned a user ID1 by
the server system 1. Once the user 1 logs into his/her user
account, the user 1 can access multiple game titles, such as
a game title G1, a game title Ga, a game title G2, and so on
until the game title GN. The game titles G1, G2 and so on
until the game title GN are examples of titles of legacy
games. The game title Ga is a title of a game that is not a
legacy game. Rather, the game title Ga is of a current game,
such as Fortnite™ that is not available for play in the legacy
machine.

[0079] After logging into his/her user account, the user 1
selects one or more buttons on the hand-held controller 414
to select the game title GN to play a legacy game. Once the
user 1 selects the game title GN, a user input 418 indicating
the selection is sent from the hand-held controller 414 via
the game console 402 and the computer network 408 to the
server system 404. As an example, a user input is an input
signal. Upon receiving the user input 418 indicating the
selection of the game title GN, the server system 404
identifies the game code gcN based on the user input 418.
For example, the server system 404 identifies that the game
code gcN has the same game title as that of the game title
GN, a selection of which is indicated in the user input 418.
[0080] The server system 404 sends the game code gcN
via the computer network 408 to the game console 402.
Upon receiving the game code gcN, the emulation processor
system 409 stores the game code gcN in the memory device
406 of the game console 402.

[0081] When a user input 420 is received, via the wireless
connection, from the hand-held controller 414 during a play
the legacy game N having the game code gcN, the emulation
processor system 409 executes the basic block compiler 104
to generate a portion of the game code GCN from a portion
of'the game code gcN stored in the memory device 406. The
portion of the game code GCN is generated based on the
user input 420. For example, when the user input 420
includes a request to move a WarHawk™ fighter jet from a
position P1 to a position P2 during a play of the legacy game
N, the basic block compiler 104 parses the game code gcN
to identify an instruction that calculates the position P2 from
the position P1. The basic block compiler 104 converts the

US 2022/0197609 Al

instruction into a basic block of the game code GCN, and the
basic block is then executed to change the position of the
WarHawk™ fighter jet to P2 from P1. In the example, the
basic block of the game code GCN is executed by the GPU
of the emulation processor system 409 to generate one or
more image frames 422. To illustrate, the one or more image
frames 422 are displayed on the display device 410 to
display a virtual environment having the WarHawk™ fighter
jet at the position P2. In this manner, a majority or the
entirety of the game code GCN is compiled by the basic
block compiler 104 and stored in the cache 102 for execu-
tion. As an example, a virtual environment, such as a virtual
scene, includes one or more virtual reality (VR) images or
one or more augmented reality (AR) images.

[0082] Inanembodiment, communication of data between
the server system 404 and the game console 402 occurs via
a network communication protocol, such as a Transmission
Control Protocol over Internet Protocol (TCP/IP). For
example, the server system 404 includes a network interface
controller to convert data into packets. Examples of a
network interface controller, as used herein, include a net-
work interface card (NIC) and a network adapter. The
network interface controller of the server system 404 is
coupled to the memory device 412 to receive data from the
memory device 412. Upon receiving the data from the
memory device 412, the network interface controller of the
server system 404 embeds the data within one or more
packets by applying the network communication protocol to
the data. The one or more packets are transferred from the
network interface controller of the server system 404 via the
computer network 408 to the game console 402. The game
console 402 includes a network interface controller, which
extracts the data from the one or more packets by applying
the network communication protocol. The network interface
controller of the game console 402 is coupled to the emu-
lation processor system 409. The network interface control-
ler of the game console 402 provides the data received from
the computer network 408 to the emulation processor system
409. Moreover, the network interface controller of the game
console 402 receives data from the emulation processor
system 409 and embeds the data within one or more packets
by applying the network communication protocol and sends
the one or more packets via the computer network 408 to the
server system 404. The network interface controller of the
server system 404 applies to network communication pro-
tocol to the one or more packets received from the computer
network 408 to extract the data from the one or more packets
and sends the data to the memory device 412 for storage.

[0083] In one embodiment, in addition to or instead of the
computer network 408, a cellular network is used to com-
municate data between the server system 404 and the game
console 402. For example, communication between the
server system 404 and the game console 402 is facilitated
using wireless technologies. The wireless technologies
include, for example, 4G or 5G wireless communication
technologies. As used herein, 5G is the fifth generation of
cellular network technology. Also, 5G networks are digital
cellular networks, in which a service area covered by
providers is divided into small geographical areas called
cells. In 5G wireless communication technology, analog
signals representing sounds and images are digitized in a
telephone, converted by an analog-to-digital converter and
transmitted as a stream of bits. All 5G wireless devices in a
cell communicate by radio waves with a local antenna array

Jun. 23, 2022

and low power automated transceiver (transmitter and
receiver) in the cell, over frequency channels assigned by the
transceiver from a pool of frequencies that are reused in
other cells. Local antennas are connected with the cellular
network by a high bandwidth optical fiber or wireless
backhaul connection. As in other cell networks, a mobile
device crossing from one cell to another is automatically
transferred to the new cell. It should be understood that 5G
networks are just an example type of a communication
network, and embodiments of the disclosure may utilize
earlier generation wireless or wired communication, such as
3G or 4G, as well as later generation wired or wireless
technologies that come after 5G.

[0084] In an embodiment, any of the game console 402
and the server system 404 is referred to herein as a com-
puting device. Other examples of the computing device
include a tablet, a smartphone, a laptop computer, a desktop
computer, and a smart television.

[0085] In one embodiment, each of the game codes gcl
through gcN is stored in a separate memory device of the
server system 404 or of a legacy machine. For example, the
game code gcl is stored in a memory device of a first legacy
machine and the game code gc2 is stored in a memory
device of a second legacy machine. As another example, the
game code gcl is stored in a first memory device of the
server system 404 and the game code gc2 is stored in a
second memory device of a server system 404.

[0086] In an embodiment, the memory device 412 or the
memory device 406 is not a cache. Rather, each of the
memory device 412 or the memory device 406 is a main
memory, such as a RAM.

[0087] In one embodiment, the memory device 412 is
coupled to a memory controller. The memory controller
reads data from the memory device 412 and writes data to
the memory device 412. The memory controller is coupled
to the network interface controller of the server system 404.
The memory controller sends data received from the net-
work interface controller of the server system 404 to the
memory device 412 for storage. The memory controller also
sends data received from the memory device 412 to the
network interface controller of the server system 404 for
sending via the computer network 408 to the game console
402.

[0088] FIG. 4B is a diagram of an embodiment of a system
450 to illustrate that the emulation processor system 409 is
located within the server system 404 and the one or more
image frames 422 are sent from the server system 404 via
the computer network 408 to the display device 410 for
display of a virtual environment or a virtual scene. The
system 450 includes the server system 404, display device
410, and the hand-held controller 414.

[0089] The server system 404 includes the memory device
412 and the emulation processor system 409. The memory
device 412 is coupled to the emulation processor system
409. The display device 410 is coupled to the computer
network 408 via a network interface controller of the display
device 410. The display device 410 includes a processor that
is coupled to the network interface controller of the display
device 410. The processor of the display device 410 receives
the user input 420 during a play of the legacy game having
the game title GN and the game code gcN, and sends the user
input 420 to the network interface controller of the display
device 410. The network interface controller of the display

US 2022/0197609 Al

device 410 sends the user input 420 via the computer
network 408 to the emulation processor system 409 of the
server system 404.

[0090] Upon receiving the user input 420, the emulation
processor system 409 performs the same functions as
described above with reference to FIG. 4A with respect to
the game code gcN to compile the basic blocks 1 through N
for generation of the one or more image frames 422. The
server system 404 sends the one or more image frames 422
via the computer network 408 to the display device 410 for
display of a virtual environment, such as a virtual environ-
ment 452, on a display screen of the display device 410. For
example, the virtual environment 452 includes a virtual
object 454, which is an example of a Warhawk™ fighter jet.
In the example, the virtual environment 452 includes a
virtual background, which includes one or more virtual
objects, such as a virtual pyramid 455 and a virtual structure
456. In this example, the virtual object 454 is capable of
shooting virtual missiles at the virtual pyramid 455 and the
virtual structure 456 during a play of the legacy game N
having the game code gcN.

[0091] Inanembodiment, communication of data between
the server system 404 and the display device 410 occurs via
the network communication protocol. For example, the
server system 404 includes the network interface controller
to convert data into packets. The network interface control-
ler of the server system 404 is coupled to the emulation
processor system 409 to receive data from the emulation
processor system and embeds the data within one or more
packets by applying the network communication protocol.
The packets are transferred from the network interface
controller of the server system 404 via the computer network
408 to the display device 410. The network interface con-
troller of the display device 410 extracts the data from the
one or more packets by applying the network communica-
tion protocol. The network interface controller of the display
device is coupled to the processor of the display device 410.
The network interface controller of the display device pro-
vides the data received from the computer network 408 to
the processor of the display device 410. The processor of the
display device 410 renders data, such as the image frames
422, on the display screen of the display device 410.
Moreover, the network interface controller of the display
device 410 receives data from the processor of the display
device 410 and embeds the data within one or more packets
by applying the network communication protocol and sends
the one or more packets via the computer network 408 to the
server system 404. The network interface controller of the
server system 404 applies to network communication pro-
tocol to the one or more packets received from the computer
network 408 to extract the data from the one or more packets
and sends the data to the emulation processor system 409.
[0092] In one embodiment, in addition to or instead of the
computer network 408, a cellular network is used to com-
municate data between the server system 404 and the display
device 410. For example, communication between the server
system 404 and the display device is facilitated using the
wireless technologies.

[0093] In an embodiment, instead of the display device
410, a head-mounted display (HMD) is used. The head-
mounted display is worn on the user 1’s head and includes
a display screen, such as an LED screen or an OLED screen
or an LCD screen. The HMD performs the same functions
as that performed by the display device 410.

Jun. 23, 2022

[0094] FIG. 5Ais a diagram to illustrate an embodiment of
a basic block. Each basic block includes a source register
address, a destination register address, and an operation. For
example, the basic block 1 includes a source register address
1, a destination register address 1, and an operation 1. The
basic block 2 includes a source register address 2, a desti-
nation register address 2, and an operation 2 and the basic
block n includes a source register address n, a destination
register address n, and an operation n. As an example, a
source register address is an address of one or more source
registers within the cache 102 and a destination register
addresses is an address of one or more destination registers
within the cache 102. Examples of an operation of a basic
block include a jump operation, and branch operation, a read
operation, a write operation, a compare operation, and a
return operation. Further examples of an operation of a basic
block include an arithmetic operation, such as an add
operation, a subtract operation, a multiply operation, and a
divide operation.

[0095] As an example, when the operation n is the read
operation, data is read from the source register address n to
execute the basic block n. As another example, when the
operation n is a write operation, data is written to the
destination register address n to execute the basic block n.
As another example, when the operation n is a move
operation, data is read from the source register address n, the
operation n is performed on the data, and the data is written
is to the destination register address n to execute the basic
block n. As yet another example, when the operation n is the
compare operation, a first value of data stored at a first
source register address mentioned in the basic block n is
compared with a second value of data stored at a second
source register address mentioned in the basic block n to
generate a comparison result and the comparison result is
stored at the destination register address n to execute the
basic block n. As another example, when the operation n is
the add operation, a first value of data stored at the first
source address mentioned within the basic block n is added
to a second value of data stored at the second source address
indicated within the basic block n to generate an add result
and the add result is stored at the destination register address
n to execute the basic block n. As yet another example, when
a virtual object, described herein, is to move from the
position P1 to the position P2 and the operation n is the write
operation in which the position of the virtual object is to be
updated from P1 to P2, the position P1 at the destination
register address n is overwritten with the position P2 to
execute the basic block n. In the example, the execution of
the basic block n indicates to the emulation processor system
409 that the virtual object is to move from the position P1
to the position P2. Also, in the example, the user input 420
(FIG. 4A) instructs the emulation processor system 409 to
move the virtual object from the position P1 to P2. Similarly,
as another example, when a virtual object, described herein,
is to move from an orientation O1 to an orientation O2 and
the operation n is the write operation in which the orientation
of the virtual object is to be updated from O1 to 02, the
orientation O1 at the destination register address n is over-
written with the orientation O2 to execute the basic block n.
In the example, the execution of the basic block n indicates
to the emulation processor system 409 that the virtual object
is to move from the orientation Ol to the orientation O2.
Further, in the example, the user input 420 instructs the

US 2022/0197609 Al

emulation processor system 409 to move the virtual object
from the orientation O1 to O2.

[0096] As still another example, when a portion of a
virtual object, described herein, is to change color from red
to green and the operation n is the write operation in which
the color of the virtual object is to be updated from red to
green, data representing the color red at the destination
register address n is overwritten with data representing the
color green to execute the basic block n. In the example, the
execution of the basic block n indicates to the emulation
processor system 409 that the color of the portion of the
virtual object is to be changed from red to green. Also, in the
example, the user input 420 instructs the emulation proces-
sor system 409 to change the color of the portion of the
virtual object from red to green. In a similar manner, other
parameters, such as intensity and texture, can be modified
based on the user input 420.

[0097] Each basic block includes a number of cycles of
execution of the basic block. For example, the basic block 1
includes a number of cycles 1 of execution of the basic block
1. As another example, the basic block 2 includes a number
of cycles 2 of execution of the basic block 2 and the basic
block n includes a number of cycles n of execution of the
basic block n. As an example, an estimated number of cycles
of execution of the basic block is estimated by the basic
block compiler 104 (FIG. 1) upon compiling the basic block.
In the example, the estimated number of cycles is stored in
the basic block. Also in the example, after the basic block is
executed by the block dispatcher 302 (FIG. 3), the block
dispatcher 302 updates the estimated number of cycles of
execution in the manner described above with the real count
and provides the real count to the block compiler 104. The
estimated number of cycles is replaced by the real count in
the basic block by the block compiler 104. As another
example, the real count of a number of cycles of execution
of the operation n is generated by the block dispatcher 302
and stored in the basic block n. In this example, there is no
estimation of a number of cycles of execution of the opera-
tion n.

[0098] Moreover, as another example, one or more of the
basic blocks 1 through n include an invalid mark indicating
that the one or more of the basic blocks 1 through n be
checked for validity. For example, the basic block n includes
an invalid mark n.

[0099] It should be noted that by converting the emulated
PU code 106 into the basic blocks 1 through n of the game
code gcN, a hook, such as a hook block, can be inserted
between any two of the basic blocks 1 through n. For
example, a hook block n can be inserted between the basic
blocks (n-1) and n. The hook block n has the same structure
as that of the basic block n. For example, the hook block
includes a source register address, a destination register
address, an operation, and a number of cycles of execution
of the operation of the hook block. As an example, due to
security issues associated with the legacy machine, a hook,
as described herein, cannot be inserted between instructions
of the emulated CPU code 106 (FIG. 1) stored in the legacy
machine for execution on the legacy machine.

[0100] It should further be noted that the basic blocks 1
through n are keyed into, such as fixed within, the cache 102
(FIG. 1). For example, the basic block 1 has a start memory
address 1, which indicates a location of start of the basic
block 1 in the cache 102. Also, the basic block 1 has an end
memory address 1, which indicates a location of end of the

Jun. 23, 2022

basic block 1 in the cache 102. As another example, the end
address 1 of the basic block 1 is indicated by an offset in the
cache 106 from the start memory address 1. As yet another
example, the basic block 2 has a start memory address 2,
which indicates a location of start of the basic block 2 in the
cache 102. Also, the basic block 2 has an end memory
address 2, which indicates a location of end of the basic
block 2 in the cache 102. As another example, the end
address 2 of the basic block 2 is indicated by an offset in the
cache 106 from the start memory address 2. Similarly, as
another example, the basic block n has a start memory
address n, which indicates a location of start of the basic
block n in the cache 102. Also, the basic block n has an end
memory address n, which indicates a location of end of the
basic block n in the cache 102. As another example, the end
address n of the basic block n is indicated by an offset in the
cache 106 from the start memory address n. From the start
and end memory addresses, stored in the cache 102, of the
basic blocks 1 through n, the emulation processor system
409 (FIG. 4A), such as the basic block compiler 102, can
identify the locations of the basic blocks 1 through n in the
cache 102.

[0101] It should also be noted that in case a user input
indicating that the block dispatcher 302 of the updated
machine execute the basic block n immediately after execut-
ing the basic block 1, the block dispatcher 302 skips
execution of the basic blocks 2 through (n-1) in the cache
102 and jumps to the basic block n from the basic block 1.
In this case, execution of the basic block 1 is closed by the
block dispatcher 302 when the block dispatcher 302 jumps
to the basic block n. Also, in this case, a start address of a
next basic block is consecutive to an end address of a
preceding basic block. For example, the start address 2 is
consecutive to the end address 1 and the start address n is
consecutive to an end address (n-1) of the basic block (n-1).
[0102] In an embodiment, the source register addresses 1
through n are memory addresses of registers of the cache
102 and the destination register addresses 1 through n are
memory addresses of registers in the cache 102.

[0103] Inone embodiment, a basic block includes multiple
operations. For example, the basic block n includes a first
operation, a first source register address, and a first desti-
nation register address. The basic block n further includes a
second operation, a second source register address, and a
second destination register address.

[0104] Inan embodiment, a basic block includes an opera-
tion, multiple source addresses, and a destination address.

[0105] In one embodiment, a basic block includes an
operation, multiple destination addresses, and a source
address.

[0106] In an embodiment, a basic block includes multiple
operations, multiple source addresses, and multiple destina-
tion addresses.

[0107] In an embodiment, a basic block includes one or
more operations, one or more source addresses, and one or
more destination addresses.

[0108] In an embodiment, a basic block includes either a
source register address or a destination register address but
not both.

[0109] In one embodiment, the block compiler 102 does
not estimate the number of cycles for execution of the basic
block n. Rather, the block dispatcher 302 generates the real
count of the number of cycles of execution of the basic block
n and stores the real count in the basic block n.

US 2022/0197609 Al

[0110] FIG. 5B is a diagram to illustrate an embodiment of
a compile operation performed by the basic block compiler
104 (FIG. 1). An example of an emulated PU code instruc-
tion M is illustrated as an instruction 550 and an example of
the basic block n is illustrated as a basic block 552, where
M is a positive integer. The instruction 550 includes a source
address M having a length of a bits, a destination address M
having a length of b bits, and an operation M represented by
bits of length ¢, where a, b, and ¢ are positive integers. As
an example, a is 4, b is 4, and ¢ is 32. As an example, the
a bits, b bits, and ¢ bits are stored in the one or more memory
devices of the legacy machine. For example, the a bits are
stored in the memory device 406 or 412 (FIGS. 4A and 4B).
The operation 552 includes the source register address n
having a length of d bits, the destination address n having a
length of e bits, and the operation n represented by bits of
length f, where d, e, and f are positive integers. As an
example, d is 8, e is 8, and fis 64. As an example, the d bits,
e bits, and f bits are stored in the one or more registers of the
updated machine. As an example, d is greater than a, e is
greater than b, and f is greater than c. To illustrate, d is 8, e
is 8, and fis 64 when a is 4, b is 4, and ¢ is 32. As another
example, d is 16, e is 16, and fis 128 when ais 4, b is 4, and
cis 32.

[0111] To perform the compile operation, the basic block
compiler 104 (FIG. 1) converts the source address M into the
source register address n, the destination address M into the
destination register address n, and the operation M into the
operation n to generate the basic block n from the emulated
PU code instruction M. For example, the basic block com-
piler 104 shifts 4 bits of the source address M to the right to
occupy 4 memory addresses of 8 source registers in the
cache 102 and masks any bits in remaining four memory
addresses of the 8 source registers. The four memory
addresses occupied by the 4 bits of the source address M are
at the least significant positions of the 8 source registers in
the cache 102 and the remaining four memory addresses in
which the bits are masked are at the most significant
positions of the 8 source registers in the cache 102.

[0112] As another example, the basic block compiler 104
shifts 4 bits of the destination address M to the right to
occupy 4 memory addresses of 8 destination registers in the
cache 102 and masks any bits in remaining four memory
addresses of the 8 destination registers. The four memory
addresses occupied by the 4 bits of the destination address
m are at the least significant positions of the 8 destination
registers in the cache 102 and the remaining four memory
addresses in which the bits are masked are at the most
significant positions of the 8 destination registers in the
cache 102.

[0113] Similarly, as another example, the basic block
compiler 104 shifts 32 bits of the operation M to the right to
occupy 32 memory addresses of 64 operation registers in the
cache 102 and masks any bits in remaining 32 memory
addresses of the 64 operation registers. The 32 memory
addresses occupied by the 32 bits of the operation M are at
the least significant positions of the 32 operation registers in
the cache 102 and the remaining 32 memory addresses in
which the bits are masked are at the most significant
positions of the 64 operation registers in the cache 102. The
operation n is stored in the operation registers of the cache
102.

[0114] FIG. 6A is a diagram of an embodiment of a system
600 to illustrate components of the emulation processor

Jun. 23, 2022

system 409. The system 600 includes the memory device
412 and the emulation processor system 409. The basic
block compiler 104 of the emulation processor system 409
includes a parser or decoder 602. The basic block compiler
104 further includes a block creator 604, a block cacher
606A, and a block reader 608. The emulation processor
system 409 includes the block dispatcher 302.

[0115] As an example, each of the parser 609, the block
creator 604, the block cacher 606, the block reader 608, and
the block dispatcher 302 is implemented using software, or
hardware, or a combination thereof. For example, each of
the parser 609, the block creator 604, the block cacher 606,
the block reader 608, and the block dispatcher 302 is a
separate integrated circuit, such as a PLD or an ASIC or a
controller or a processor or a portion of a computer program.
As another example, each of the parser 609, the block
creator 604, the block cacher 606, the block reader 608, and
the block dispatcher 302 is a separate computer software
program.

[0116] The game code geN includes multiple instructions,
such as an emulated PU code instruction 1, an emulated PU
code instruction 2 and so on until the emulated PU code
instruction M. For example, each instruction of the game
code geN is a series of bits that can be executed by the
processor of the legacy machine to implement a function,
such as moving a virtual object from the position P1 to the
position P2, or changing an orientation of the virtual object
from O1 to O2, or modifying the parameter of a portion of
the virtual object.

[0117] The parser 602 is coupled to the block creator 604,
which is coupled to the block cacher 606 and to the block
reader 608. The block cacher 606 and the block reader 608
or coupled to the cache 102. The block reader 608 is coupled
to the block dispatcher 302.

[0118] FIG. 6B is a flowchart to illustrate an embodiment
of a method 650 for compiling and executing the basic
blocks 1 through n. The method 650 is illustrated using the
system 600 of FIG. 6A. In an operation 652 of the method
650, the block creator 604 determines whether any user
input, such as a user input 1, is received. As an example, the
user input 1 is a signal that includes and one or more
identifications of one or more buttons of the hand-held
controller 414 (FIG. 4A) that are selected by the user 1. As
another example, the user input 1 is a signal that includes a
measure of movement, such as pitch, yaw, and roll, with
respect to an origin of an xyz co-ordinate system centered on
the hand-held controller 414. As yet another example, the
user input 1 is a signal that includes a measure of movement,
such as pitch, yaw, and roll, with respect to an origin of an
xyZ co-ordinate system of the HMD. An example of the user
input 1 is the user input 420 (FIG. 4A).

[0119] The block creator 604 continues to check whether
the user input is received in the operation 652 upon deter-
mining that the user input is not received. For example, the
basic block compiler 104 does not run any of basic blocks
(n+1) through p stored in the cache 102 (FIG. 1) and the
basic block compiler 104 (FIG. 1) does not identify any of
the emulated PU code instructions 1 through M (FIG. 6A)
when the user input is not received in the operation 652,
where p is a positive integer. It is assumed that at a time the
user input is received in the operation 652, the basic blocks
1 through n are not generated and are not stored in the cache
102.

US 2022/0197609 Al

[0120] On the other hand, in response to determining that
the user input is received in the operation 652, in an
operation 654 of the method 650, the block creator 604
determines whether one or more of the basic blocks (n+1)
through p that are stored in the cache 102 satisfy the user
input. For example, the block creator 604 sends a request to
the block reader 608 to access the basic blocks (n+1) through
p from the cache 102. In the example, the block reader 608,
upon receiving the request, reads the basic blocks (n+1)
through p from the cache 102 and sends the basic blocks
(n+1) through p to the block creator 604. Further, in the
example, the block creator 604 determines whether func-
tionality of one or more of the basic blocks (n+1) through p
satisfies, such as services, the user input 1. To illustrate,
when the user input 1 indicates to change a position of a
virtual object from the position P1 to the position P2, the
block creator 604 determines whether any of the basic
blocks (n+1) through p include an operation of overwriting
the position P1 with the position P2. Upon determining that
one or more of the basic blocks (n+1) through p include the
operation of overwriting the position P1 with P2, the block
creator 604 determines that one or more functionalities of
the one or more of the blocks (n+1) through p satisfies the
user input 1. On the other hand, upon determining that none
of the basic blocks (n+1) through p include the operation of
overwriting the position P1 with P2, the block creator 604
determines that functionalities of the basic blocks (n+1)
through p do not satisfy the user input 1.

[0121] As another illustration, when the user input 1 is to
change an orientation of a virtual object from the orientation
O1 to the orientation O2, the block creator 604 determines
whether any of the basic blocks (n+1) through p include an
operation of overwriting the orientation O1 with the orien-
tation O2. Upon determining that one or more of the basic
blocks (n+1) through p includes the operation of overwriting
the orientation O1 with O2, the block creator 604 determines
that one or more functionalities of the one or more of the
basic blocks (n+1) through p satisfies the user input 1. On the
other hand, upon determining that none of the basic blocks
(n+1) through p includes the operation of overwriting the
orientation O1 with O2, the block creator 604 determines
that functionalities of the basic blocks (n+1) through p do
not satisty the user input 1. As yet another illustration, when
the user input 1 is to change a value of the parameter of a
portion of a virtual object from a first value to a second
value, the block creator determines whether any of the basic
blocks (n+1) through p include an operation of overwriting
the first value with the second value. Upon determining that
one or more of the basic blocks (n+1) through p include the
operation of overwriting the first value with the second
value, the block creator 604 determines that one or more
functionalities of the one or more of the basic blocks (n+1)
through p satisfies the user input 1. On the other hand, upon
determining that none of the basic blocks (n+1) through p
include the operation of overwriting the first value at the
second value, the block creator 604 determines that func-
tionalities of the basic blocks (n+1) through p do not satisfy
the user input 1.

[0122] Upon determining that the functionalities of one or
more of the basic blocks (n+1) through p satisfy the user
input 1, in an operation 656 of the method 600, the block
dispatcher 302 executes the one or more of the basic blocks
(n+1) through p. For example, upon determining that the
functionalities of one or more of the basic blocks (n+1)

Jun. 23, 2022

through p satisfy the user input 1, the block creator 604
sends an instruction to the block dispatcher 302 to execute
the one or more of the basic blocks (n+1) through p. In the
example, in response to receiving the instruction, the block
dispatcher 302 sends a command to the block reader 608 to
read the one or more of the basic blocks (n+1) through p
from the cache 102 for satisfying the user input received in
the operation 652. Also, in the example, upon receiving the
one or more of the basic blocks from the cache 102 in
response to the command, the block dispatcher 302 executes
the one or more of the basic blocks (n+1) through p.

[0123] On the other hand, upon determining that the
functionalities of the blocks (n+1) through p do not satisfy
the user input 1, in an operation 658 of the method 600, the
block compiler 102 identifies one or more of the emulated
PU code instructions 1 through M for servicing the user
input received in the operation 652. For example, upon
determining that the functionalities of the blocks (n+1)
through p do not satisfy the user input 1, the block creator
604 sends a request to the parser 602 to parse the game code
geN to identify and obtain one or more of the emulated PU
code instructions 1 through M of the game code gcN that
satisfy the functionality identified in the user input 1. In the
example, in response to receiving the request, the parser 602
accesses the memory device 412 to parse the game code gcN
to determine whether functionalities of one or more of the
emulated PU code instructions 1 through M satisfy the user
input 1 and upon determining that the functionalities of one
or more of the emulated PU code instructions 1 through M
satisfy the user input 1, the parser 602 provides the one or
more of the emulated PU code instructions 1 through M to
the block creator 604.

[0124] To illustrate, when the user input 1 is to change a
position of a virtual object from the position P1 to the
position P2, the parser 602 determines whether any of the
emulated PU code instructions 1 through M include an
operation of overwriting the position P1 with the position
P2. Upon determining that one or more of the emulated PU
code instructions 1 through M include the operation of
overwriting the position P1 with P2, the parser 602 deter-
mines that one or more functionalities of the one or more of
the emulated PU code instructions 1 through M satisfies the
user input 1. On the other hand, upon determining that none
of the emulated PU code instructions 1 through M includes
the operation of overwriting the position P1 with P2, the
parser 602 determines that functionalities of the emulated
PU code instructions 1 through M do not satisfy the user
input 1.

[0125] As another illustration, when the user input 1 is to
change an orientation of a virtual object from the orientation
01 to the orientation O2, the parser 602 determines whether
any of the emulated PU code instructions 1 through M
include an operation of overwriting the orientation O1 with
the orientation O2. Upon determining that one or more of the
emulated PU code instructions 1 through M includes the
operation of overwriting the orientation O1 with O2, the
parser 602 determines that one or more functionalities of the
one or more of the emulated PU code instructions 1 through
M satisfies the user input 1. On the other hand, upon
determining that none of the emulated PU code instructions
1 through M includes the operation of overwriting the
orientation O1 with O2, the parser 602 determines that
functionalities of the emulated PU code instructions 1
through M do not satisfy the user input 1. As yet another

US 2022/0197609 Al

illustration, when the user input 1 is to change a value of the
parameter of a portion of a virtual object from a first value
to a second value, the parser 602 determines whether any of
the emulated PU code instructions 1 through M include an
operation of overwriting the first value with the second
value. Upon determining that one or more of the emulated
PU code instructions 1 through M include the operation of
overwriting the first value with the second value, the parser
602 determines that one or more functionalities of the one or
more of the emulated PU code instructions 1 through M
satisfies the user input 1. On the other hand, upon determin-
ing that none of the emulated PU code instructions 1 through
M include the operation of overwriting the first value at the
second value, the parser 602 determines that functionalities
of the emulated PU code instructions 1 through M do not
satisfy the user input 1.

[0126] In an operation 660 of the method 600, when the
one or more of the emulated PU code instructions 1 through
M that satisfy the user input 1 are received from the parser
602, the block creator 604 applies the compile operation,
described above, to generate one or more of the basic blocks
1 through n from the one or more of the emulated PU code
instructions 1 through M. For example, the block creator 604
compiles the one or more of the basic blocks 1 through n,
sends the one or more of the basic blocks 1 through n to the
block cacher 606, and sends an instruction to the block
dispatcher 302 to execute the one or more of the basic blocks
1 through n. Upon receiving the one or more of the basic
blocks 1 through n, the block cacher 606 stores the one or
more of the basic blocks 1 through n in the cache 102.

[0127] In an operation 662 of the method 600, upon
receiving the instruction from the block creator 604 to
execute the one or more of the basic blocks 1 through n, the
block dispatcher 302 runs the one or more of the basic
blocks 1 through n to service the user input received in the
operation 652. For example, the block dispatcher 302 sends
a request to the block reader 608 to read the one or more of
the basic blocks 1 through n from the cache 102. Upon
receiving the command, the block reader 608 reads the one
or more of the basic blocks 1 through n from the cache 102
and provides the one or more of the basic blocks 1 through
n to the block dispatcher 302. Upon receiving the one or
more of the basic blocks 1 through n, the block dispatcher
302 executes the one or more of the basic blocks 1 through
n to generate the virtual environment 452 (FIG. 4B). To
illustrate, the block dispatcher 302 executes the one or more
of the basic blocks 1 through n to generate an image frame,
which includes virtual environment data, such as a position
and an orientation of the virtual object 454, the parameter of
the virtual object 454, positions and orientations of other
virtual objects in the virtual environment 452, and the
parameter of the other virtual objects in the virtual environ-
ment 452. The block dispatcher 302 provides the image
frame to a GPU of the emulation processor system 409 to
display, such as render, the virtual environment 452 on the
display screen of the display device 410 (FIG. 4A). The
method 600 repeats, when another user input, such as the
user input 2, is received after the user input 1 is received in
the operation 652.

[0128] FIG. 6C is a diagram of an embodiment of a system
670 to illustrate that for different user inputs, different basic
blocks or different sets of basic blocks are compiled dynami-
cally. The system 670 includes the memory device 412, the
basic block compiler 104, the block dispatcher 302, and the

Jun. 23, 2022

cache 102. When the user input 1 is received by the basic
block compiler 104, the basic block compiler 104 deter-
mines if the basic block 1 that corresponds to the user input
1 is stored in the cache 102. For example, the basic block 1
corresponds to the user input 1 when the basic block 1
includes a function for servicing the user input 1. To
illustrate, when the user input 1 is to move a virtual object
from the position P1 to the position P2 and the basic block
1 includes an operation of updating the position P1 stored at
the destination register address 1 with the position P2, the
basic block 1 can service the user input 1. In the illustration,
the user input 1 is a signal indicating a selection of a move
to right button or a move to left button or a move up button
or a move down button on the hand-held controller 414
(FIG. 4A). Similarly, the basic block 2 does not correspond
to the user input 1 when the basic block 2 does not include
a function for servicing the user input 1. To illustrate, when
the user input 1 is to move a virtual object from the position
P1 to the position P2 without changing an orientation of the
virtual object and the basic block 2 includes an operation of
updating the orientation O1 stored in the destination register
2 with the orientation O2, the basic block 2 cannot service
the user input 1. Upon determining that the basic block 1 that
can service the user input 1 is stored in the cache 102, the
basic block compiler 104 provides the basic block 1 to the
block dispatcher 302 for executing the basic block 1.

[0129] On the other hand, upon determining that the basic
block 1 is not stored in the cache 102, the basic block
compiler 104 parses the emulated PU code 106 stored in the
memory device 412 to identify the emulated PU code
instruction 1 corresponding to the user input 1. For example,
the basic block compiler 104 parses the emulated PU code
106 to identify that the emulated PU code instruction 1
satisfies, such as services, the user input 1. To illustrate,
when the user input 1 is to move a virtual object from the
position P1 to the position P2 and the emulated PU code
instruction 1 includes a function of updating the position P1
stored at the destination address 1 with the position P2, the
emulated PU code instruction 1 can service the user input 1.
Similarly, the emulated PU code instruction 2 does not
correspond to the user input 1 when the emulated PU code
instruction 2 does not include a function for servicing the
user input 1. To illustrate, when the user input 1 is to move
a virtual object from the position P1 to the position P2
without changing an orientation of the virtual object and the
emulated PU code instruction 2 includes an operation of
updating the orientation O1 stored at the destination address
2 with the orientation O2, the emulated PU code instruction
2 cannot service the user input 1.

[0130] Upon determining that the emulated PU code
instruction 1 can service the user input 1 and the emulated
PU code instruction 2 cannot service the user input 1, the
basic block compiler 104 accesses, such as reads, the
emulated PU code instruction 1 from the memory device
412 and compiles the basic block 1 from the emulated PU
code instruction 1. The basic block compiler 102 does not
compile the basic block 2 from the emulated PU code
instruction 2 in response to receiving the user input 1. The
basic block compiler 104 stores the basic block 1 in the
cache 102 and sends an instruction to the block dispatcher
302 to access and execute the basic block 1. Upon receiving
the instruction, block dispatcher 302 reads the basic block 1
from the cache 102 and runs the basic block 1.

US 2022/0197609 Al

[0131] Similarly, when the user input 2 is received by the
basic block compiler 104, the basic block compiler 104
determines if the basic block 2 that corresponds to the user
input 2 is stored in the cache 102. For example, the basic
block 2 corresponds to the user input 2 when the basic block
2 includes a function for servicing the user input 2. To
illustrate, when the user input 2 is to move a virtual object
from the orientation O1 to the orientation O2 and the basic
block 2 includes an operation of updating the orientation O1
stored at the destination register address 2 with the orien-
tation 02, the basic block 2 can service the user input 2. In
the illustration, the user input 2 is a signal indicating a
selection of a rotate clockwise or a rotate counterclockwise
button on the hand-held controller 414. Similarly, the basic
block 1 does not correspond to the user input 2 when the
basic block 1 does not include a function for servicing the
user input 2. To illustrate, when the user input 2 is to move
a virtual object from the orientation O1 to the orientation O2
without changing a position of the virtual object and the
basic block 1 includes an operation of updating the position
P1 stored in the destination register 1 with the position P2,
the basic block 1 cannot service the user input 2. Upon
determining that the basic block 2 can service the user input
2 is stored in the cache 102, the basic block compiler 104
provides the basic block 2 to the block dispatcher 302 for
executing the basic block 2.

[0132] On the other hand, upon determining that the basic
block 2 is not stored in the cache 102, the basic block
compiler 104 parses the emulated PU code 106 stored in the
memory device 412 to identify the emulated PU code
instruction 2 corresponding to the user input 2. For example,
the basic block compiler 104 parses the emulated PU code
106 to identify that the emulated PU code instruction 2
satisfies, such as services, the user input 2. To illustrate,
when the user input 2 is to move a virtual object from the
orientation O1 to the orientation O2 and the emulated PU
code instruction 2 includes a function of updating the
orientation O1 stored at the destination address 2 with the
orientation 02, the emulated PU code instruction 2 can
service the user input 2. Similarly, the emulated PU code
instruction 1 does not correspond to the user input 2 when
the emulated PU code instruction 1 does not include a
function for servicing the user input 2. To illustrate, when
the user input 2 is to move a virtual object from the
orientation O1 to the orientation O2 without changing a
position of the virtual object and the emulated PU code
instruction 1 includes an operation of updating the position
P1 stored in the destination address 1 with the position P2,
the emulated PU code instruction 1 cannot service the user
input 2.

[0133] Upon determining that the emulated PU code
instruction 2 can service the user input 2 and the emulated
PU code instruction 1 cannot service the user input 2, the
basic block compiler 104 accesses, such as reads, the
emulated PU code instruction 2 from the memory device
412 and compiles the emulated PU code instruction 2 to
generate the basic block 2. The basic block compiler 102
does not compile the emulated PU code instruction 1 in
response to receiving the user input 2. The basic block
compiler 104 stores the basic block 2 in the cache 102 and
sends an instruction to the block dispatcher 302 to access
and execute the basic block 2. Upon receiving the instruc-
tion, block dispatcher 302 reads the basic block 2 from the
cache 102 and runs the basic block 2.

Jun. 23, 2022

[0134] FIG. 7Ais a diagram of an embodiment of a system
700 to illustrate deletion of the emulated PU code 106 from
the memory device 412. The system 700 includes the block
creator 604, an instruction remover 702, and the memory
device 412. Examples of the instruction remover 702
include a processor, an ASIC, a PLD, a computer program,
a portion of a computer program, and a microcontroller. The
instruction remover 702 is coupled to the block creator 604
and to the memory device 412.

[0135] FIG. 7B is a flowchart to illustrate an embodiment
of a method 720 for deleting the emulated PU code 106
(FIG. 6C) from the memory device 412 (FIG. 6C). The
method 720 includes an operation 702 for determining
whether all instructions of the emulated PU code 106 are
compiled. For example, the block creator 604 (FIG. 7A)
determines whether all of the emulated PU code instructions
1 through M of the game code gcN are compiled. To
illustrate, before compiling any of the emulated PU code
instructions 1 through M of the game code gcN, the block
creator 604 sends a request to the processor of the legacy
machine to obtain identities of all of the emulated PU code
instructions 1 through M of the game code gcN. In the
illustration, the block creator 604 sends an identity, such as
one or more bits, of the game code gcN to the processor of
the legacy machine to obtain identities of all of the emulated
PU code instructions 1 through M of the game code gcN.
Examples of the identities of the emulated PU code instruc-
tions 1 through M include one or more bits. To illustrate, the
identity of the emulated PU code instruction M is repre-
sented by a first sequence of bits and the identity of the
emulated PU code instruction M-1 is represented by a
second sequence of bits, which is different from the first
sequence. Upon receiving the identities of the emulated PU
code instructions 1 through M from the processor of the
legacy machine, the block creator 604 stores the identities in
a table in the cache 102. As each of the emulated PU code
instructions 1 through M is compiled, the block creator 604
updates the table to include indications that identify which
of the emulated PU code instructions 1 through M are
compiled. The block creator 604 determines whether all of
the emulated PU code instructions 1 through M are compiled
from the indications that identify which of the emulated PU
code instructions 1 through M are compiled.

[0136] Upon determining that all the emulated PU code
instructions 1 through M of the game code gcN are com-
piled, the block creator 604 sends a command to the instruc-
tion remover 702 (FIG. 7A) to delete the game code gcN
from the memory device 412. Upon receiving the command,
in an operation 724 of the method 720, the instruction
remover 702 erases the emulated PU code instructions 1
through M from the memory device 412.

[0137] On the other hand, upon determining that one or
more of the emulated PU code instructions 1 through M of
the game code gcN are not compiled based on the table, in
an operation 726 of the method 720, the block creator 604
does not send the command to the instruction remover 702
to delete the game code gcN from the memory device 412.
Until the command to delete the game code gcN is received,
the instruction remover 702 does not delete the emulated PU
code instructions 1 through M from the memory device 412.
[0138] In one embodiment, the block creator 604 deter-
mines whether the game code gcN is accessed from the
memory device 412 (FIG. 4A) within a pre-determined time
period, which is stored in the cache 102, from the latest time

US 2022/0197609 Al

the game code gcN is accessed from the memory device 412.
As an example, the block creator 604 can access the Internet
clock via the computer network 408 to determine the latest
time and the pre-determined time period. As another
example, the block creator 604 includes a clock source, such
as a clock oscillator, to count the latest time and the
pre-determined time period. Upon determining that the
game code gcN is not accessed from the memory device 412
within the pre-determined time period, the block creator 604
sends a command to the instruction remover 702 to delete
the game code gcN from the memory device 412. As an
example, when the game code gcN is not accessed within the
pre-determined time period, a majority of emulated CPU
code instructions 1 through M are accessed by the basic
block compiler 104 to compile one or more of the basic
blocks 1 through n. As another example, when the game
code gcN is not accessed within the pre-determined time
period, a number of emulated CPU code instructions 1
through M that are frequently used during a play of the
legacy game N having the game title GN are accessed by the
basic block compiler 104 to compile one or more of the basic
blocks 1 through n. On the other hand, upon determining that
the game code geN is accessed within the pre-determined
time period, the block creator 604 does not send the com-
mand to the instruction remover 702 and the game code gcN
is not deleted from the memory device 412.

[0139] FIG. 8A is a diagram of an embodiment of an
emulation processor system 800 to illustrate validation of
basic blocks. The emulation processor system 800 is an
example of the emulation processor system 409 (FIG. 4B).
The emulation processor system 800 includes the basic
block compiler 104, the cache 102, a block validator 802 and
a block flagger 804. The block validator 802 is coupled to
the block creator 604, the block dispatcher 302, the parser
602, and the block flagger 804. Each of the clock validator
802 and the block flagger 804 is coupled to the cache 102.

[0140] As an example, the block validator 802 is imple-
mented as an ASIC, or a PLD, or a microcontroller, or a
processor, or a computer program, or a portion of a computer
program. Also as an example, the block flagger 804 is
implemented as an ASIC, or a PLD, or a microcontroller, or
a processor, or a computer program, or a portion of a
computer program.

[0141] In one embodiment, the terms ASIC, PLD, micro-
controller, microprocessor, controller, and processor are
used herein interchangeably.

[0142] FIG. 8B is a flowchart of an embodiment of a
method 850 to illustrate a validation operation performed by
the emulation processor system 800 (FIG. 8A). In an opera-
tion 852 of the method 800, the block validator 802 (FIG.
8A) determines whether the basic block n is compiled. For
example, the block validator 802 accesses, such as reads, the
cache 102 to determine whether a new basic block, such as
the basic block n, is now stored in the cache 102 compared
to the basic blocks 1 through n-1 previously stored in the
cache 102. The block validator 802 previously identified the
basic blocks 1 through n-1 stored in the cache 102. Upon
determining that the basic block n is not cached, the block
validator 802 continues to access the cache 102 to determine
whether the new basic block is cached. For example, the
block validator 802 periodically parses the basic blocks 1
through n-1 stored in the cache 102 to determine whether
the basic block n is stored in the cache 102.

Jun. 23, 2022

[0143] Upon determining that the basic block n is cached,
the block validator 802 creates, in an operation 854 of the
method 800, a first hash value from the one or more of the
emulated PU code instructions 1 through M from which the
basic block n is compiled. For example, the block validator
802 sends a request to the parser 602 to obtain the one or
more of the emulated CPU code instructions 1 through M
from the memory device 412. The request includes identities
of memory addresses of the basic block n in the cache 102.
The identities of the memory addresses of the basic block n
are received, such as obtained by request, from the block
creator 604 by the block validator 602. The parser 602, upon
receiving the request from the block validator 802, reads the
one or more of the emulated PU code instructions 1 through
M from the memory device 412 and provides the one or
more of the emulated PU code instructions 1 through M to
the block validator 802. To illustrate, when the one or more
of the emulated PU code instructions 1 through M are
provided to the basic block compiler 104 for compiling the
basic block n, the parser 602 stores a one-to-one correspon-
dence between one or more identities of one or more
memory addresses occupied by the basic block n in the
cache 102 and one or more identities of one or more memory
addresses occupied by the one or more of the emulated PU
code instructions 1 through M in the memory device 412.
The parser 602 receives the identities of the memory
addresses of the basic block n in the cache 102 from the
block validator 802 and identifies the one or more memory
addresses of the one or more of the emulated PU code
instructions 1 through M in the memory device 412 from the
one-to-one correspondence. The parser 602 reads the one or
more of the emulated PU code instructions 1 through M
from the one or more memory addresses of the memory
device 412 and provides the one or more of the emulated PU
code instructions 1 through M to the block validator 802.

[0144] Continuing with the example, upon receiving the
one or more of the emulated PU code instructions 1 through
M from the parser 602, the block validator 802 generates the
first hash value from the one or more of the emulated PU
code instructions 1 through M and stores the first hash value
in the cache 102. To illustrate, the block validator 802
generates a digest or a checksum from the one or more of the
emulated PU code instructions 1 through M corresponding
to the basic block n. In the example, the first hash value is
stored in one or more registers, of the cache 102, that are
keyed to include the basic block n.

[0145] In an operation 856 of the method 800, the block
validator 802 sends a command to the parser 602 to deter-
mine whether the one or more memory addresses, within the
memory device 412, at which the one or more of the
emulated PU code instructions 1 through M are stored, are
overwritten. The one or more memory addresses, within the
memory device 412, can be overwritten with data from a
compact disc-read only memory (CD-ROM) of the legacy
machine. The data can be an update to the one or more of the
emulated PU code instructions 1 through M. The update to
the one or more of the emulated PU code instructions 1
through M is referred to as updated instructions. Alterna-
tively, the data can be corrupted data, which is not the
updated instructions. The parser 602, upon receiving the
command from the block validator 802 sends a request to the
processor of the legacy machine to determine whether the
one or more memory addresses, within the memory device

US 2022/0197609 Al

412, at which the one or more of the emulated PU code
instructions 1 through M are stored are overwritten.

[0146] Upon receiving the request from the parser 602, the
processor of the legacy machine provides a response to the
request and the response indicates whether the one or more
memory addresses, within the memory device 412, at which
the one or more of the emulated PU code instructions 1
through M are stored are overwritten. Upon receiving the
response that the one or more memory addresses, within the
memory device 412, at which the one or more of the
emulated PU code instructions 1 through M are stored are
not overwritten, the block validator 802 sends a command to
the block flagger 804 (FIG. 8A) to not mark the basic block
n as invalid. Upon receiving the command, in an operation
858 of the method 800, the block flagger 804 does not mark
the basic block n as invalid.

[0147] On the other hand, upon receiving the response that
the one or more memory addresses, within the memory
device 412, at which the one or more of the emulated PU
code instructions 1 through M are stored are overwritten, in
an operation 860 of the method 850, the block validator 802
sends a command to the block flagger 804 (FIG. 8A) to mark
the basic block n as invalid. Upon receiving the command to
mark the basic block n as invalid, the block flagger 804
marks the basic block n as invalid. For example, the block
flagger 804 accesses the basic block n within the cache 102
and includes an identifier, such as the invalid mark n (FIG.
5A), within the memory addresses in the cache 102 having
the basic block n to indicate that the basic block n is invalid.
An example of the invalid mark n is a sequence of bits.

[0148] In one embodiment, a hash value is an example of
a validation result.

[0149] FIG. 8C is a continuation of the flowchart of the
method 800 of FIG. 8B. In an operation 862 of the method
800, the block validator 802 (FIG. 8A) determines whether
the basic block n is to be executed. For example, the block
dispatcher 302 sends an indication to the block validator 802
that the basic block n is to be executed. Upon receiving the
indication from the block dispatcher 302 that the basic block
n is to be executed, the block validator 802 determines that
the basic block n is to be executed. Until the indication is
received, the block validator 802 does not determine that the
basic block n is to be validated.

[0150] Upon determining that the basic block n is to be
executed, the block validator 802, in an operation 864 of the
method 800, determines whether the basic block n is marked
as invalid. For example, the block validator 802 sends a
command to the block flagger 804 to determine whether the
basic block n is flagged as invalid. Upon receiving the
command, the block flagger 804 sends an indication to the
block validator 802 whether the basic block n is flagged as
invalid. To illustrate, the block flagger 804 accesses the basic
block n to determine whether the basic block n includes the
invalid mark n to generate and send the indication of
invalidity to the block validator 802. As another illustration,
the block flagger 804 accesses the basic block n to determine
whether the basic block n does not include the invalid mark
n to generate and send the indication of lack of invalidity to
the block validator 802. Upon receiving the indication from
the block flagger 804 that the basic block n is marked as
invalid, the block validator 802 determines that the basic
block n is invalid. On the other hand, upon receiving the
indication from the block flagger 804 that the basic block n

Jun. 23, 2022

lacks the invalid mark n, the block validator 802 determines
that the basic block n is not marked as invalid.

[0151] Upon determining that the basic block n is not
marked as invalid, in an operation 866 of the method 800,
the basic block n is executed. For example, the operation 866
is similar to the operation 662 (FIG. 6B). To illustrate, the
block validator 802 sends a command to the block dis-
patcher 302 to execute the basic block n. Upon receiving the
command to execute the basic block n, the block dispatcher
302 runs the basic block n. In this illustration, until the
command is received from the block validator 802 for
execution of the basic block n, the block dispatcher 302 does
not execute the basic block n.

[0152] On the other hand, in response to determining that
the basic block n is marked as invalid, in an operation 866
of the method 800, the block validator 802 determines
whether the basic block n is actually valid. For example,
upon determining that the basic block n is marked as invalid,
the block validator 802 creates a second hash value from
either the updated instructions or the corrupted data stored in
the same memory addresses, within the memory device 412,
at which the one or more of the emulated PU code instruc-
tions 1 through M from which the basic block n is compiled
are stored. In the example, the second hash value is stored
in one or more registers, of the cache 102, that are keyed to
include the basic block n. To illustrate, the block validator
802 sends a request to the parser 602 to obtain the updated
instructions or the corrupted data stored at the one or more
memory addresses within the memory device 412. The
parser 602, upon receiving the request, reads the updated
instructions or the corrupted data from the one or more
memory addresses from the memory device 412, and pro-
vides the updated instructions or the corrupted data to the
block validator 802. In the illustration, the block validator
802 generates the second hash value from the updated
instructions or the corrupted data and stores the second hash
value in the cache 102. For example, the block validator 802
generates a digest or a checksum from the updated instruc-
tions or the corrupted data. In the illustration, the block
validator 802 compares the second hash value with the first
hash value to determine whether the basic block n is valid.
Upon determining, based on the comparison, that there is a
match between the first hash value and the second hash
value, the block validator 802 determines that the basic
block n is valid. The match occurs when the second hash
value is generated from the updated instructions. On the
other hand, upon determining, based on the comparison, that
there is a lack of match between the first hash value and the
second hash value, the block validator 802 determines that
the basic block n is invalid. The lack of match occurs when
the second hash value is generated from the corrupted data.

[0153] In response to determining that the basic block n is
valid, in an operation 870 of the method 800, the invalid
mark n is removed. For example, the block validator 802
sends a command to the block flagger 804 to remove the
invalid mark n from the basic block n stored in the cache
102. Upon receiving the command from the block validator
802, the block flagger 804 accesses the basic block n from
the cache 102 and erases the invalid mark n from the basic
block n. To illustrate, the block flagger 804 erases the invalid
mark n from one or more memory addresses of the cache
102 in which the invalid mark n is stored. Upon removing
the invalid mark n, the block flagger 804 sends a command
to the block dispatcher 302 to execute the basic block n, and

US 2022/0197609 Al

upon receiving the command, in the operation 866, the block
dispatcher 302 runs the basic block n. As an example, the
block dispatcher 302 does not execute the basic block n until
the command to execute the basic block n is received from
the block flagger 804.

[0154] On the other hand, upon determining that the basic
block n is not valid, in an operation 872 of the method 800,
an additional basic block, having the same functionality or
operation as the basic block n, is compiled. For example, the
block validator 802 sends a command to the block dis-
patcher 302 to not execute the basic block n and sends an
indication to the block creator 604 that the basic block n is
invalid. Upon receiving the indication, the block creator 604
recompiles the basic block n. To illustrate, the block creator
604 compiles the additional basic block in the same manner
as that of compiling the basic block n from one of the more
of the emulated PU code instructions 1 through M stored in
the memory device 412 except that the additional basic
block is compiled from an additional set of emulated PU
code instructions, such as one or more of the emulated PU
code instructions 1 through M, stored within a memory
device of an additional legacy machine. The additional
legacy machine is different from the legacy machine that
includes the memory device 412. Also, the additional set of
emulated PU code instructions are of the same game title GN
as that of the game code gcN. As another illustration, the
block creator 604 compiles the additional basic block in the
same manner as that of compiling the basic block n from one
of the more of the emulated PU code instructions 1 through
M stored in the memory device 412 except that the addi-
tional basic block is compiled from an additional set of
emulated PU code instructions, such as one or more of the
emulated PU code instructions 1 through M, stored within
different memory addresses of the memory device 412 than
memory addresses, of the memory device 412, at which the
emulate PU code instructions 1 through M are stored. As yet
another illustration, the block creator 604 compiles the
additional basic block in the same manner as that of com-
piling the basic block n from one of the more of the emulated
PU code instructions 1 through M stored in the memory
device 412 except that the additional basic block is compiled
from an additional set of emulated PU code instructions,
such as one or more of the emulated PU code instructions 1
through M, stored within a different memory device than the
memory device 412.

[0155] The additional basic block is sent from the block
creator 604 to the block dispatcher 302 for execution. For
example, the block dispatcher 302 executes the additional
basic block to generate a portion of an additional virtual
environment, such as the virtual environment 452 (FIG. 4B).
To illustrate, the block dispatcher 302 executes the addi-
tional basic block to generate a portion of an image frame,
which includes additional virtual environment data, such as
a position and an orientation of the virtual object 454, the
parameter of the virtual object 454, positions and orienta-
tions of other virtual objects in the virtual environment 452,
and the parameter of the other virtual objects in the addi-
tional virtual environment. The block dispatcher 302 pro-
vides the image frame to the GPU of the emulation processor
system 409 to display, such as render, the additional virtual
environment on the display screen of the display device 410.
[0156] It should be noted that although the method 850 is
illustrated with reference to the basic block n and the
additional basic block, the method 850 is equally applicable

Jun. 23, 2022

to other basic blocks 1 through (n-1) and more additional
basic blocks, which are generated in the same manner in
which the additional basic block is generated.

[0157] In one embodiment, the set of emulated PU code
instructions 1 through M are stored in a first set of one or
more memory devices, located outside the legacy machine,
and the additional set of emulated PU code instructions is
stored in a second set of one or more memory devices,
located outside the additional legacy machine.

[0158] FIG. 9A is a diagram to illustrate an embodiment of
a legacy machine 900. An example of the legacy machine
900 is the PS1™ or the PS2™. The legacy machine 900
includes a legacy CPU 902, a legacy GPU 904, a memory
device 906, and a CD-ROM drive 908. The memory device
906 is an example of the memory device 412 (FIG. 4A). An
example of the legacy CPU 902 is a 32-bit CPU that can
process at most 32 bits during one clock cycle. Also,
example of the legacy GPU 904 is a 32-bit GPU that can
process at most 32 bits during one clock cycle. An example
of the memory device 906 is a 2 megabyte (MB) RAM.
[0159] The legacy CPU 902 and the legacy GPU 904 are
coupled to the memory device 906, which is coupled to the
CD-ROM drive 908. The emulated PU code 106 is stored
within the memory device 906.

[0160] The legacy CPU 902 or the legacy GPU 904 access
the emulated PU code 106 from the memory device 906 and
processes the emulated PU code 106. The CD-ROM drive
908 receives a CD-ROM, which includes the updated
instructions or the corrupted code. The updated instructions
or the corrupted code can be transferred from the CD-ROM
to the memory device 906 by the legacy CPU 902.

[0161] In one embodiment, the legacy machine 900
excludes a cache. In an embodiment, the legacy machine
900 includes a cache of limited capacity, such as a 4 kilobyte
(KB) cache.

[0162] FIG. 9B is a diagram to illustrate an embodiment of
an updated machine 920. An example of the updated
machine 920 is the PS4™ or the PSS™. The updated
machine 920 includes a CPU 922, a GPU 924, a memory
system 926, and a cache 928, which is an example of the
cache 102 (FIG. 1). The game console 402 (FIG. 4B) is an
example of the updated machine 920. As an example, the
CPU 922 includes two quad-core modules and each module
can process 64 bits during each clock cycle. Each core has
a 32 kilobyte (KB) cache. Another example of the CPU 922
is a 64-bit CPU that can process at most 64 bits during one
clock cycle. As an example, the GPU 924 has 1152 cores and
each core can process 64-bits during one clock cycle. As
another example, the legacy GPU 924 is a 64-bit GPU that
can process at most 64 bits during one clock cycle.

[0163] The CPU 922 and the GPU 924 are coupled to the
memory system 906. As an example, the emulated PU code
106 is stored within the legacy memory system 906. An
example of the memory system 926 includes is a hard drive
that provides a storage of 500 gigabytes (GB), or 2 terabytes
(TB). The CPU 922, the GPU 924, the cache 928, and the
memory system 926 are coupled to each other via a bus 930.
[0164] The CPU 922 or the GPU 924 accesses the cache
928 first before accessing the memory system 926. Upon
determining that the cache 928 does not data that is
requested by the CPU 922 or the GPU 924, the CPU 922 or
the GPU 924 accesses the memory system 926.

[0165] It should be noted that in one embodiment, the
game code gcN cannot be executed by the CPU 922 or the

US 2022/0197609 Al

GPU 924 but can be executed by the legacy CPU 902 or the
legacy GPU 904. Also, the basic blocks 1 through n can be
executed by the CPU 922 or the GPU 924 but cannot be
executed by the legacy CPU 902 or the legacy GPU 904.
[0166] Inone embodiment, the cache 928 is located within
the CPU 922.

[0167] In an embodiment, the cache 928 is located within
the GPU 924.

[0168] Inoneembodiment, the cache 928 is located within
the CPU 922 and another cache, such as the cache 102, is
located within the GPU 924.

[0169] FIG. 10A is a diagram of an embodiment of a
system 1000 to illustrate combining of multiple basic blocks
into one basic block by the basic block compiler 104 (FIG.
1). The block creator 604 (FIG. 6A) receives the user input
1, such as a signal indicating that the virtual object 454 (FIG.
4B) be initiated at the position P1 and the orientation O1 at
a level 1 of the legacy game N having the game title GN.
Upon receiving the user input 1, the basic block 1 is
generated by the basic block compiler 104 based on the
emulated PU code instruction 1 to service the user input 1.
Similarly, the block creator 604 receives the user input 2,
such as a signal indicating that the virtual object 454 be
initiated at the position P1 and the orientation O1 at a level
2 of the legacy game N. Upon receiving the user input 2, the
basic block 2 is generated by the basic block compiler 104
based on the emulated PU code instruction 2 to service the
user input 2.

[0170] When auser input 3, such as a signal indicating that
the virtual object 454 be initiated at the position P1 and the
orientation O1 at a level 3 of the legacy game N, is received,
the block compiler 104 identifies the basic blocks 1 and 2 as
servicing the user input 3. Upon identifying so, the block
creator 604 integrates, such as combines, the basic blocks 1
and 2 into a single basic block, such as the basic block 1 or
the basic block 2. The integration saves memory space in the
cache 102 and also increases efficiency in accessing the
single basic block instead of accessing the basic block 1 and
the basic block 2.

[0171] The block creator 604 further generates a value in
a pointer of the cache 102. An example of a pointer, as used
herein, is a register. The pointer indicates to the block
dispatcher 302 to execute the single basic block when a user
input for servicing the basic block 1 or the basic block 2 is
received. At a time the block dispatcher 302 is to execute the
basic block 1 or 2, the block dispatcher 302 accesses the
pointer and executes the single basic block instead of the
basic block 1 or 2.

[0172] FIG. 10B is a diagram of an embodiment of a
system 1020 to illustrate modification of one or more of the
basic blocks 1 through n. The system 1020 includes a block
interface 1022, the cache 102, and the block dispatcher 302.
As an example, the basic block n includes the operation n of
dead reckoning. As another example, the basic block n
includes the operation n of bouncing back a crosshair from
an edge of the display screen of the display device 410 (FIG.
4B). An example of the block interface 1022 is an ASIC, or
a PLD, or a microprocessor, or a microcontroller, or a
computer program, or a portion of a computer program. The
block interface 1022 is coupled to the cache 102.

[0173] The block interface 1022 provides access to the
user to one or more of the basic blocks 1 through n stored
in the cache 102. For example, the user selects one or more
buttons on an input device, such as a keyboard or a mouse

Jun. 23, 2022

or a keypad, to generate a modification input 1024. As an
example, the modification input 1024 includes one or more
user instructions in the form of source code to modify the
basic block n. To illustrate, the modification input 1024
includes a user instruction to remove the operation n of dead
reckoning from the basic block n. As another example, the
modification input 1024 includes an instruction to change
the operation n to include that the cross hair slides off the
edge of the display screen of the display device 410 and is
displayed at an opposite edge of the display screen of the
display device 410. The opposite edge is diagonally opposite
to the edge at which the cross hair slides off.

[0174] The input device is coupled to the block interface
1022. The modification input 1024 is sent from the input
device to the block interface 1022 to modify the basic block
n to output a modified basic block n. As an example, the
modified basic block n does not include the operation of
dead reckoning. As another example, the modified basic
block n includes the operation n of sliding off the crosshair
from the edge to the opposite edge. As yet another example,
the modified basic block n includes an operation of calcu-
lating a number of clock cycles of execution of the operation
n and storing the number in the basic block n. To illustrate,
the number of cycles is stored in memory addresses of the
cache 102 in which the basic block 1 is stored. The operation
of calculating the number of clock cycles is executed by the
block dispatcher 302 (FIG. 3) in addition to executing the
operation n. The block dispatcher 302 calculates the number
of clock cycles upon execution of the operation n and stores
the number in the basic block n.

[0175] The block creator 604 further generates a value in
a pointer within the cache 102, and the pointer indicates to
the block dispatcher 302 to execute the modified basic block
n when a user input for servicing the basic block n is
received. At a time the block dispatcher 302 is to execute the
basic block n, the block dispatcher 302 accesses the pointer
and executes the modified basic block n instead of the basic
block n.

[0176] FIG. 10C is a diagram of an embodiment of a
system 1030 to illustrate combining of a basic block created
based on a subroutine with a basic block generated based on
an emulated PU code instruction, which calls the subroutine.
The block creator 604 (FIG. 6A) receives the user input 1,
such as a signal indicating a change in a position and/or an
orientation of the virtual object 454 (FIG. 4B) that results in
a destruction of the virtual object 454. Upon receiving the
user input 1, the basic block 1 is generated by the basic block
compiler 104 based on the emulated PU code instruction 1
to service the user input 1. The emulated PU code instruction
1 includes a function call to a subroutine 1. As such, upon
receiving the user input 1, the basic block 2 is generated by
the basic block compiler 104 based on the subroutine 1,
which is an example of the emulated PU code instruction 2.
As an example, the basic block 2 includes the operation 2 of
regenerating the virtual object 454 at the position P1 and the
orientation O1.

[0177] When a user input 2, such as a signal indicating a
change in a position and/or an orientation of the virtual
object 454 (FIG. 4B) that results in a destruction of the
virtual object 454, is received, the block compiler 104
identifies the basic blocks 1 and 2 as servicing the user input
2. Upon identifying so, the block creator 604 integrates, such
as combines, the basic blocks 1 and 2 into a single basic
block, such as the basic block 1 or the basic block 2. For

US 2022/0197609 Al

example, upon receiving the user input 2, the destruction of
the virtual object 454 and the regeneration of the virtual
object 454 are triggered. When the basic blocks 1 and 2 are
combined, the subroutine 1 is skipped.

[0178] The block creator 604 further generates a value and
stores the value in a pointer within the cache 102. The value
indicates to the block dispatcher 302 to execute the single
basic block when a user input for servicing the basic blocks
1 and 2 is received. At a time the block dispatcher 302 is to
execute the basic blocks 1 and 2, the block dispatcher 302
accesses the pointer and executes the single basic block
instead of the basic block 1.

[0179] FIG. 10D is a diagram of an embodiment of a
system 1040 to illustrate an insertion of a basic block
between two basic blocks. The system 1040 includes the
block interface 1022 and the cache 102. After the basic
blocks 1 and 2 are stored in the cache 102, a modification
input 1042 is received from the user via the input device. As
an example, the modification input 1042 is a signal including
a source code that defines a basic block 1.1, which includes
a source register address 1.1 within the cache 102, a desti-
nation register address 1.1 within the cache 102, and an
operation 1.1 to be performed on data stored within the
source register address 1.1, or on the destination register
address 1.1, or both the source and destination register
addresses 1.1. Examples of the operation 1.1 include jump,
store, load, branch, and an arithmetic operation.

[0180] The modification input 1042 further includes an
indication of a location of the basic block 1.1 and an
association of the basic block 1.1 with the basic block 1 or
2. For example, the modification input 1042 includes a
signal indicating that the basic block 1.1 is to be inserted
between the basic blocks 1 and 2 in the cache 102 and a
signal indicating that the basic block 1.1 is to be linked to the
basic blocks 1 and/or 2.

[0181] To illustrate, the basic block 1.1 is inserted to
include a location, such as one or more register addresses, in
the cache 102, for receiving an invalid mark 2 of the basic
block 2. As another illustration, the basic block 1.1 is
inserted to include a location, such as one or more register
addresses in the cache 102, for receiving a number of cycles
of execution of the basic block 2. In the illustration, the
block interface 1022 receives the modification input 1042,
identifies, from the modification input 1042 that the basic
block 1.1 is to be inserted between the basic blocks 1 and 2,
and inserts the basic block 1.1 between the basic blocks 1
and 2. As another illustration, the block interface 1022
determines that the basic block 1.1 includes an operation for
unlocking a level in the legacy game N having the game title
GN. The level is between a first level identified in an
operation of the basic block 1 and a second level identified
in an operation of the basic block 2. The first and second
levels are in the legacy game N having the game title GN.
The level inserted between the first and second levels is not
a part of the game code gcN but is a new level of the legacy
game N. An example of the level inserted between the first
and second levels is a level in which the virtual object 454
shoots a laser gun instead of missiles.

[0182] Inaddition, the block interface 1022 identifies from
the modification input 1042 a value of a pointer and stores
the value the cache 102. As an example, the value of the
pointer indicates that execution of the basic block 1.1 occur
immediately before execution of the basic block 2. When the
block dispatcher 302 is to execute the basic block 2, the

Jun. 23, 2022

block dispatcher 302 identifies the value within the pointer
to point the basic block 1.1, and executes the basic block 1.1
immediately before executing the basic block 2. As another
example, the value of the pointer indicates that execution of
the basic block 1.1 occur immediately after execution of the
basic block 2. After the block dispatcher 302 executes the
basic block 2, the block dispatcher 302 identifies the value
within the pointer to point the basic block 1.1, and executes
the basic block 1.1 immediately after executing the basic
block 2.

[0183] FIG. 10E is a diagram of an embodiment of a
system 1050 to illustrate a switch in order of execution of
basic blocks. The system 1050 includes the cache 102 and
the block interface 1022. The cache 102 includes a value
within a pointer of the cache 102 and the value indicates that
the basic block 2 be executed after executing the basic block
1. The user uses the input device to provide a modification
input 1052, which includes a signal indicating that an order
of execution of the basic blocks 1 and 2 be switched. Upon
receiving the signal, the block interface 1022 changes a
value of the pointer in the cache 102 to indicate that the basic
block 1 be executed after executing the basic block 2.
[0184] FIG. 11A is a flowchart of an embodiment of a
method 1100 to illustrate use of the real count of the number
of cycles stored in the basic block n. The method 1100
includes the operation 662 of executing the basic block n. In
an operation 1102 of the method 1100, the block dispatcher
302 (FIG. 3) counts the number of cycles of execution, in the
operation 662, of the basic block n to generate a first count.
The block dispatcher 302, in an operation 1104 of the
method 1100, stores the first count in the basic block n. For
example, the block dispatcher 302 writes the real count to a
register having one of register addresses, within the cache
102, that are assigned to the basic block n.

[0185] Inan operation 1106 of the method 1100, the block
creator 604 (FIG. 6A) determines whether the same basic
block n is to be executed again. For example, the block
creator 604 determines whether a user input for servicing the
same basic block n is received from the client device. The
block creator 604 continues to determine whether the user
input for servicing the same basic block n is received until
the user input is received.

[0186] FIG. 11B is a continuation of the flowchart of the
method 1100 of FIG. 11A. Upon determining that the user
input for servicing the basic block n is received again, the
basic block n is executed again by the block dispatcher 304.
In an operation 1108 of the method 1100, the block dis-
patcher 304 counts a number of cycles of execution, in the
operation 1106, of the basic block n, to calculate a second
count.

[0187] The block dispatcher 304 determines whether the
second count is within a pre-determined limit from the first
count in an operation 1108 of the method 1100. The pre-
determined limit is stored in the cache 102. In response to
determining that the second count is not within the pre-
determined limit from the first count, in an operation 1110 of
the method 1100, the block dispatcher 304 generates a
notice. For example, when the block dispatcher 304 is
located within the game console 402 (FIG. 4A), the GPU
924 (FIG. 9B) of the game console 402 displays a repre-
sentation of the notice on the display device 410 (FIG. 4A)
of the client device and sends the notice and via the
computer network 408 to the server system 404 to notify the
server system 404. As another example, when the block

US 2022/0197609 Al

dispatcher 304 is located within the server system 404 (FIG.
4B), the block dispatcher 304 generates the notice and a
GPU of the server system 404 displays the representation of
the notice on a display device that is coupled to the server
system 404. On the other hand, determining that the second
count is within the pre-determined limit from the first count,
in an operation 1112 of the method 1100, the block dis-
patcher 304 does not trigger the notice.

[0188] FIG. 12 is a diagram of an embodiment of a system
1200 to illustrate a transfer of the basic blocks 1 through n
from a first client device to a second client device. The
system 1200 includes the game console 402, the computer
network 408, the server system 404, a game console 1202,
and a display device 1204. The game console 1202 is similar
to the game console 402. For example, both the game
consoles 402 and 1202 are PS4s™, or both the game
consoles 402 and 1202 are PS5s™, or the game console 402
is a PS4™ and the game console 1202 is a PS5™, or the
game console 402 is a PS5™ and the game console 1202 is
a PS4™. As another example, the game console 1202 is not
a legacy machine. Also, the display device 1204 is similar to
the display device 410 of FIG. 4A. For example, the display
device 410 is an HMD or a television or a smart television
or a computer monitor.

[0189] The game console 402 includes a network interface
controller 1212. The game console 1202 includes an emu-
lated processor system 1206, a cache 1208, and a network
interface controller 1210. The emulated processor system
1206 has the same structure and same functionality as that
of the emulated processor system 409. Also, the cache 1208
has the same structure and the same functionality as that of
the cache 102. The emulated processor system 1206, the
cache 1208, and the network interface controller 1210 are
coupled to each other via a bus 1218.

[0190] Once the basic blocks 1 through n are stored in the
cache 102, the basic block compiler 104 of the emulated
processor system 409 sends the basic blocks 1 through n to
the network interface controller 1212. The network interface
controller 1212 applies the network communication protocol
to the basic blocks 1 through n to generate one or more
packets embedding the basic blocks 1 through n and sends
the one or more packets via the computer network 408 to the
server system 404. Upon receiving the one or more packets,
the network interface controller of the server system 404
applies the network communication protocol to the one or
more packets to extract the basic blocks 1 through n for the
legacy game N having the game title GN and stores the basic
blocks 1 through n in one or more memory devices of the
server system 404.

[0191] A user 2 uses a hand-held controller 1212 to select
one or more buttons on the hand-held controller 1212 to log
into his/her user account that is assigned to the user 2 by the
server system 404. The user 2 logs into his/her user account
when a user ID2 and a password are authenticated by the
server system 404. Once the user 2 logs into his/her user
account, the user 2 can access multiple game titles, such as
the game title G1, the game title Ga, the game title G2, and
so on until the game title GN.

[0192] Upon logging into the user account 2, the user 2
uses the hand-held controller 1212 to select one or more
buttons on the hand-held controller 1212 to generate a user
input 1214. The user input 1214 is generated upon selection
of the legacy game N having the title GN displayed on the
display device 1204. When the user input 1214 is generated,

Jun. 23, 2022

the cache 1208 does not include the basic blocks 1 through
n. For example, upon receiving the user input 1214, a basic
block compiler of the emulated processor system 1206
checks the cache 102 to determine whether the cache 102
includes one or more of the basic blocks 1 through n of the
game code GCN for servicing the user input 1214. Upon
determining that the cache 102 does not include the one or
more of the basic blocks 1 through n for servicing the user
input 1214, the emulated processor system 1206 generates a
request 1220 for the one or more of the basic blocks 1
through n and sends the request 1220 to the network
interface controller 1210.

[0193] Upon receiving the request 1220, the network
interface controller 1210 generates one or more packets
embedding the request 1220 by applying the network com-
munication protocol to the request 1220, and sends the one
or more packets via the computer network 408 to the server
system 404. The network interface controller of the server
system 404 receives the one or more packets and applies the
network communication protocol to extract the request 1220
from the one or more packets. A processor of the server
system 404 analyzes the request 1220 to identify that the
basic blocks 1 through n are requested.

[0194] In response to determining that the basic blocks 1
through n are requested, the server system 404 accesses the
basic blocks 1 through n stored in the one or more memory
devices of the server system 404 and provides the basic
blocks 1 through n to the network interface controller of the
server system 404. The network interface controller of the
server system 404 applies the network communication pro-
tocol to generate one or more packets embedding the basic
blocks 1 through n and sends the one or more packets via the
computer network 408 to the game console 1202.

[0195] The network interface controller 1210 of the game
console 1202 receives the one or more packets having the
basic blocks 1 through n, applies the network communica-
tion protocol to extract the basic blocks 1 through n from the
one or more packets, and sends the basic blocks 1 through
n to the emulated processor system 1206. The basic block
compiler of the emulated processor system 1206 stores the
basic blocks 1 through n in the cache 1208.

[0196] When a user input 1224 is received from the
hand-held controller 1212 during a play of the game having
the game title GN, the basic block compiler of the emulated
processor system 1206 identifies one or more of the basic
blocks 1 through n within the cache 1208 for servicing the
user input 1224. A block dispatcher of the emulated proces-
sor system 1206 executes the one or more of the basic blocks
1 through n for servicing the user input 1224. In this manner,
once the basic blocks 1 through n are compiled by the
emulated processor system 409, the basic blocks 1 through
n do not need to be compiled by the emulated processor
system 1206 but can be accessed by the emulated processor
system 1206 from the server system 404.

[0197] FIG. 13 is a flow diagram conceptually illustrating
various operations which are performed for streaming a
cloud video game to a client device, in accordance with
implementations of the disclosure. Examples of the client
device include a game controller, a smart phone, a game
console, and a computer. A game server 1302 executes the
game program 458 (FIG. 4B), such as a video game, and
generates raw (uncompressed) video 1304 and audio 1306.
The virtual environment 452 (FIG. 4A) and audio output
during presentation of the virtual environment 452 are

US 2022/0197609 Al

examples of the video 1004 and audio 1306. The game
server 1302 is an example of the server system 404 (FIG.
4A). The video 1304 and audio 1306 are captured and
encoded for streaming purposes, as indicated at reference
1308 in the illustrated diagram. The encoding provides for
compression of the video and audio streams to reduce
bandwidth usage and optimize the gaming experience.
Examples of encoding formats include H.265/MPEG-H,
H.264/MPEG-4, H.263/MPEG-4, H.262/MPEG-2, WMV,
VP6/7/8/9, etc.

[0198] Encoded audio 1310 and encoded video 1312 are
further packetized into network packets, as indicated at
reference numeral 1314, for purposes of transmission over a
computer network 1320, which is an example of the com-
puter network 408 (FIG. 4A). In some embodiments, the
network packet encoding process also employs a data
encryption process, thereby providing enhanced data secu-
rity. In the illustrated implementation, audio packets 1316
and video packets 1318 are generated for transport over the
computer network 1320.

[0199] The game server 1302 additionally generates hap-
tic feedback data 1322, which is also packetized into net-
work packets for network transmission. In the illustrated
implementation, haptic feedback packets 1324 are generated
for transport over the computer network 1320.

[0200] The foregoing operations of generating the raw
video and audio and the haptic feedback data are performed
on the game server 1302 of a data center, and the operations
of encoding the video and audio, and packetizing the
encoded audio/video and haptic feedback data for transport
are performed by the streaming engine of the data center. As
indicated, the audio, video, and haptic feedback packets are
transported over the computer network 1320. As indicated at
reference 1326, the audio packets 1316, video packets 1318,
and haptic feedback packets 1324, are disintegrated, e.g.,
parsed, etc., by the client device to extract encoded audio
1328, encoded video 1330, and haptic feedback data 1322 at
the client device from the network packets. If data has been
encrypted, then the data is also decrypted. The encoded
audio 1328 and encoded video 1330 are then decoded by the
client device, as indicated at reference 1334, to generate
client-side raw audio and video data for rendering on a
display device 1340 of the client device. The haptic feed-
back data 1322 is processed by a processor of the client
device to produce a haptic feedback effect at a controller
device 1324 or other interface device, e.g., the HMD, etc.,
through which haptic effects can be rendered. The controller
device 1324 is an example of a hand-held controller of the
client device. One example of a haptic effect is a vibration
or rumble of the controller device 1324.

[0201] It will be appreciated that a video game is respon-
sive to player inputs, and thus, a similar procedural flow to
that described above for transmission and processing of
player input, but in the reverse direction from client device
to server, is performed. As shown, the controller device 1324
or another input component, e.g., a body part of the user 1,
etc., or a combination thereof generates input data 1348. The
input data 1348 is packetized at the client device for trans-
port over the computer network 1320 to the data center.
Input data packets 1346 are unpacked and reassembled by
the game server 1302 to define the input data 1348 on the
data center side. The input data 1348 is fed to the game
server 1302, which processes the input data 1348 to generate
a game state of the legacy game N.

Jun. 23, 2022

[0202] During transport via the computer network 1320 of
the audio packets 1316, the video packets 1318, and haptic
feedback packets 1324, in some embodiments, the transmis-
sion of data over the computer network 1320 is monitored to
ensure a quality of service. For example, network conditions
of the computer network 1320 are monitored as indicated by
reference 1350, including both upstream and downstream
network bandwidth, and the game streaming is adjusted in
response to changes in available bandwidth. That is, the
encoding and decoding of network packets is controlled
based on present network conditions, as indicated by refer-
ence 1352.

[0203] FIG. 14 is a block diagram of an embodiment of a
game console 1400 that is compatible for interfacing with a
display device of a client device and is capable of commu-
nicating via the computer network 1320 (FIG. 13) with a
game hosting system, such as the server system 404 (FIG.
4A). The game console 1400 is an example of the game
console 402 (FIG. 4A). The game console 1400 is located
within the data center or is located at a location at which a
player, such as the user 1 or 2, is located. In some embodi-
ments, the game console 1400 is used to execute a game that
is displayed on an HMD. The game console 1400 is provided
with various peripheral devices connectable to the game
console 1400. The game console 1400 has a cell processor
1428, a dynamic random access memory (XDRAM) unit
1426, a Reality Synthesizer graphics processor unit 1430
with a dedicated video random access memory (VRAM)
unit 1432, and an input/output (I/O) bridge 1434. The game
console 1400 also has a Blu Ray® Disk read-only memory
(BD-ROM) optical disk reader 1440 for reading from a disk
14404 and a removable slot-in hard disk drive (HDD) 1436,
accessible through the I/O bridge 1434. Optionally, the game
console 1400 also includes a memory card reader 1438 for
reading compact flash memory cards, memory Stick®
memory cards and the like, which is similarly accessible
through the I/O bridge 1434. The I/O bridge 1434 also
connects to USB 2.0 ports 1424, a gigabit Ethernet port
1422, an IEEE 802.11b/g wireless network (Wi-Fi™) port
1420, and a Bluetooth® wireless link port 1418 capable of
supporting Bluetooth connections.

[0204] In operation, the I/O bridge 1434 handles all wire-
less, USB and Ethernet data, including data from a game
controller and from the HMD 1405. For example, when the
player is playing the legacy game N generated by execution
of a portion of a game code, such as the game code GCN,
the 1/O bridge 1434 receives input data or an input signal,
described herein, from a game controller 1342 (FIG. 13) or
1403 and/or from the HMD 1405 via a Bluetooth link and
directs the input data to the cell processor 1428, which
updates a current state of the legacy game N accordingly. As
an example, a camera within the HMD 1405 captures a
gesture of the player to generate an image representing the
gesture. The game controller 1342 is an example of the
hand-held controller 406 (FIG. 4A).

[0205] The wireless, USB and Ethernet ports also provide
connectivity for other peripheral devices in addition to the
game controllers 1342 and 1403 and the HMD 1405, such
as, for example, a remote control 1404, a keyboard 1406, a
mouse 1408, a portable entertainment device 1410, such as,
e.g., a Sony Playstation Portable® entertainment device,
etc., a video camera, such as, e.g., an EyeToy® video camera
1412, etc., a microphone headset 1414, and a microphone
1415. The portable entertainment device 1410 is an example

US 2022/0197609 Al

of'a game controller. In some embodiments, such peripheral
devices are connected to the game console 1400 wirelessly,
for example, the portable entertainment device 1410 com-
municates via a Wi-Fi™ ad-hoc connection, whilst the
microphone headset 1414 communicates via a Bluetooth
link.

[0206] The provision of these interfaces means that the
game console 1400 is also potentially compatible with other
peripheral devices such as digital video recorders (DVRs),
set-top boxes, digital cameras, portable media players, Voice
over Internet protocol (IP) telephones, mobile telephones,
printers and scanners.

[0207] In addition, a legacy memory card reader 1416 is
connected to the game console 1400 via the USB port 1424,
enabling the reading of memory cards 1448 of a kind used
by the game console 1400. The game controllers 1342 and
1403, and the HMD 1405 are operable to communicate
wirelessly with the game console 1400 via the Bluetooth
link 1418, or to be connected to the USB port 1424, thereby
also receiving power by which to charge batteries of the
game controller 1342 and 1403 and the HMD 1405. In some
embodiments, each of the game controllers 1342 and 1403,
and the HMD 1405 includes a memory, a processor, a
memory card reader, permanent memory, such as, e.g., flash
memory, etc., light emitters such as, e.g., an illuminated
spherical section, light emitting diodes (LEDs), or infrared
lights, etc., microphone and speaker for ultrasound commu-
nications, an acoustic chamber, a digital camera, an internal
clock, a recognizable shape, such as, e.g., a spherical section
facing the game console 1400, and wireless devices using
protocols, such as, e.g., Bluetooth, Wi-Fi, etc.

[0208] The game controller 642 is a controller designed to
be used with two hands by a player, such as the player 1 or
2 or 3 or 4, and the game controller 1403 is a single-hand
controller with an attachment. The HMD 1405 is designed to
fit on top of a head and/or in front of eyes of the player. In
addition to one or more analog joysticks and conventional
control buttons, each game controller 1342 and 1403 is
susceptible to three-dimensional location determination.
Similarly, the HMD 1405 is susceptible to three-dimensional
location determination. Consequently, in some embodi-
ments, gestures and movements by the player that uses the
game controller 1342 and 1403 and of the HMD 1405 are
translated as inputs to a game in addition to or instead of
conventional button or joystick commands Optionally, other
wirelessly enabled peripheral devices, such as, e.g., the
Playstation™ Portable device, etc., are used as a controller.
In the case of the Playstation™ Portable device, additional
game or control information, e.g., control instructions or
number of lives, etc., is provided on a display screen of the
device. In some embodiments, other alternative or supple-
mentary control devices are used, such as, e.g., a dance mat
(not shown), a light gun (not shown), a steering wheel and
pedals (not shown), bespoke controllers, etc. Examples of
bespoke controllers include a single or several large buttons
for a rapid-response quiz game (also not shown).

[0209] The remote control 1404 is also operable to com-
municate wirelessly with the game console 1400 via the
Bluetooth link 1418. The remote control 1404 includes
controls suitable for the operation of the Blu Ray™ Disk
BD-ROM reader 1440 and for navigation of disk content.

[0210] The Blu Ray™ Disk BD-ROM reader 1440 is
operable to read CD-ROMs compatible with the game
console 1400, in addition to conventional pre-recorded and

Jun. 23, 2022

recordable CDs, and so-called Super Audio CDs. The Blu
Ray™ Disk BD-ROM reader 1440 is also operable to read
digital video disk-ROMs (DVD-ROMs) compatible with the
game console 1400, in addition to conventional pre-recorded
and recordable DVDs. The Blu Ray™ Disk BD-ROM
reader 1440 is further operable to read BD-ROMs compat-
ible with the game console 1400, as well as conventional
pre-recorded and recordable Blu-Ray Disks.

[0211] The game console 1400 is operable to supply audio
and video, either generated or decoded via the Reality
Synthesizer graphics unit 1430, through audio connectors
1450 and video connectors 1452 to a display and sound
output device 1442, such as, e.g., a monitor or television set,
etc., having a display screen 1444 and one or more loud-
speakers 1446, or to supply the audio and video via the
Bluetooth® wireless link port 1418 to the display device of
the HMD 1405. The audio connectors 1450, in various
embodiments, include conventional analogue and digital
outputs whilst the video connectors 1452 variously include
component video, S-video, composite video, and one or
more High Definition Multimedia Interface (HDMI) out-
puts. Consequently, video output may be in formats such as
phase alternating line (PAL) or National Television System
Committee (NTSC), or in 2220p, 1080i or 1080p high
definition. Audio processing, e.g., generation, decoding, etc.,
is performed by the cell processor 1408. An operating
system of the game console 1400 supports Dolby® 5.1
surround sound, Dolby® Theatre Surround (DTS), and the
decoding of 7.1 surround sound from Blu-Ray® disks. The
display and sound output device 1442 is an example of the
display device 410 (FIG. 4A).

[0212] In some embodiments, a video camera, e.g., the
video camera 1412, etc., comprises a single charge coupled
device (CCD), an LED indicator, and hardware-based real-
time data compression and encoding apparatus so that
compressed video data is transmitted in an appropriate
format such as an intra-image based motion picture expert
group (MPEG) standard for decoding by the game console
1400. An LED indicator of the video camera 1412 is
arranged to illuminate in response to appropriate control
data from the game console 1400, for example, to signify
adverse lighting conditions, etc. Some embodiments of the
video camera 1412 connect to the game console 1400 via a
USB, Bluetooth or Wi-Fi communication port. Various
embodiments of a video camera include one or more asso-
ciated microphones and also are capable of transmitting
audio data. In several embodiments of a video camera, the
CCD has a resolution suitable for high-definition video
capture. In use, images captured by the video camera are
incorporated within a game or interpreted as game control
inputs. In another embodiment, a video camera is an infrared
camera suitable for detecting infrared light.

[0213] In various embodiments, for successful data com-
munication to occur with a peripheral device, such as, for
example, a video camera or remote control via one of the
communication ports of the game console 1400, an appro-
priate piece of software, such as, a device driver, etc., is
provided.

[0214] In some embodiments, the aforementioned system
devices, including the game console 1400, the game con-
troller 1342 (FIG. 13) or 1403, and the HMD 1405 enable
the HMD 1405 to display and capture video of an interactive
session of the game.

US 2022/0197609 Al

[0215] The system devices initiate an interactive session
of the game, the interactive session defining interactivity
between the player 1 and other players and the game. The
system devices further determine an initial position and
orientation of the game controller 1342 (FIG. 13) or 1303,
and/or the HMD 1405 operated by a player, such as the
player 1, or 2, or 3, or 4. The game console 1400 determines
a current state of a game based on the interactivity between
a player, such as the player 1, or 2, or 3, or 4, and the game.
The system devices track a position and orientation of the
game controller 642 (FIG. 6) or 1403 and/or the HMD 1405
during an interactive session of the player with the legacy
game N. The system devices generate a spectator video
stream of the interactive session based on a current state of
the legacy game N and the tracked position and orientation
of the HHC and/or the HMD 1405. In some embodiments,
the HHC renders the spectator video stream on a display
screen of the HHC. In various embodiments, the HMD 1405
renders the spectator video stream on a display screen of the
HMD 1405.

[0216] With reference to FIG. 15, a diagram illustrating
components of an HMD 1502 is shown. The HMD 1502 is
an example of the HMD 1405 (FIG. 14). The HMD 1502
includes a processor 1500 for executing program instruc-
tions. A memory device 1502 is provided for storage pur-
poses. Examples of the memory device 1502 include a
volatile memory, a non-volatile memory, or a combination
thereof. A display device 1504 is included which provides a
visual interface, e.g., display of image frames generated
from save data, etc., that the player views. A battery 1506 is
provided as a power source for the HMD 1502. A motion
detection module 1508 includes any of various kinds of
motion sensitive hardware, such as a magnetometer 1510, an
accelerometer 1512, and a gyroscope 1514.

[0217] An accelerometer is a device for measuring accel-
eration and gravity induced reaction forces. Single and
multiple axis models are available to detect magnitude and
direction of the acceleration in different directions. The
accelerometer is used to sense inclination, vibration, and
shock. In one embodiment, three accelerometers 1512 are
used to provide the direction of gravity, which gives an
absolute reference for two angles, e.g., world-space pitch
and world-space roll, etc.

[0218] A magnetometer measures a strength and a direc-
tion of a magnetic field in a vicinity of the HMD 1502. In
some embodiments, three magnetometers 1510 are used
within the HMD 1502, ensuring an absolute reference for the
world-space yaw angle. In various embodiments, the mag-
netometer is designed to span the earth magnetic field, which
is 80 microtesla. Magnetometers are affected by metal, and
provide a yaw measurement that is monotonic with actual
yaw. In some embodiments, a magnetic field is warped due
to metal in the real-world environment, which causes a warp
in the yaw measurement. In various embodiments, this warp
is calibrated using information from other sensors, e.g., the
gyroscope 1514, a camera 1516, etc. In one embodiment, the
accelerometer 1512 is used together with magnetometer
1510 to obtain the inclination and azimuth of the HMD
1502.

[0219] A gyroscope is a device for measuring or main-
taining orientation, based on the principles of angular
momentum. In one embodiment, instead of the gyroscope
1514, three gyroscopes provide information about move-
ment across the respective axis (x, y and z) based on inertial

Jun. 23, 2022

sensing. The gyroscopes help in detecting fast rotations.
However, the gyroscopes, in some embodiments, drift over-
time without the existence of an absolute reference. This
triggers resetting the gyroscopes periodically, which can be
done using other available information, such as positional/
orientation determination based on visual tracking of an
object, accelerometer, magnetometer, etc.

[0220] The camera 1516 is provided for capturing images
and image streams of the real-world environment, e.g.,
room, cabin, natural environment, etc., surrounding the
player. In various embodiments, more than one camera is
included in the HMD 1502, including a camera that is
rear-facing, e.g., directed away from the player, when the
player is viewing the display of the HMD 1502, etc., and a
camera that is front-facing, e.g., directed towards the player
when the player is viewing the display of the HMD 1502,
etc. Additionally, in several embodiments, a depth camera
1518 is included in the HMD 1502 for sensing depth
information of objects in the real-world environment.

[0221] The HMD 1502 includes speakers 1520 for pro-
viding audio output. Also, a microphone 1522 is included, in
some embodiments, for capturing audio from the real-world
environment, including sounds from an ambient environ-
ment, and speech made by the player, etc. The HMD 1502
includes a tactile feedback module 1524, e.g., a vibration
device, etc., for providing tactile feedback to the player. In
one embodiment, the tactile feedback module 1524 is
capable of causing movement and/or vibration of the HMD
1502 to provide tactile feedback to the player.

[0222] LEDs 1526 are provided as visual indicators of
statuses of the HMD 1502. For example, an LED may
indicate battery level, power on, etc. A card reader 1528 is
provided to enable the HMD 1502 to read and write infor-
mation to and from a memory card. A USB interface 1530
is included as one example of an interface for enabling
connection of peripheral devices, or connection to other
devices, such as other portable devices, computers, etc. In
various embodiments of the HMD 1502, any of various
kinds of interfaces may be included to enable greater con-
nectivity of the HMD 1502.

[0223] A Wi-Fi™ module 1532 is included for enabling
connection to the Internet via wireless networking technolo-
gies. Also, the HMD 1502 includes a Bluetooth™ module
1534 for enabling wireless connection to other devices. A
communications link 1536 is also included, in some embodi-
ments, for connection to other devices. In one embodiment,
the communications link 1536 utilizes infrared transmission
for wireless communication. In other embodiments, the
communications link 1536 utilizes any of various wireless or
wired transmission protocols for communication with other
devices.

[0224] Input buttons/sensors 1538 are included to provide
an input interface for the player. Any of various kinds of
input interfaces are included, such as buttons, touchpad,
joystick, trackball, etc. An ultra-sonic communication mod-
ule 1540 is included, in various embodiments, in the HMD
1502 for facilitating communication with other devices via
ultra-sonic technologies.

[0225] Bio-sensors 1542 are included to enable detection
of physiological data from the player. In one embodiment,
the bio-sensors 1542 include one or more dry electrodes for
detecting bio-electric signals of the player, through the
player’s skin.

US 2022/0197609 Al

[0226] The foregoing components of HMD 1502 have
been described as merely exemplary components that may
be included in HMD 1502. In various embodiments, the
HMD 1502 includes or does not include some of the various
aforementioned components.

[0227] FIG. 16 illustrates an embodiment of an Informa-
tion Service Provider (INSP) architecture. INSPs 1602
delivers a multitude of information services to the player
geographically dispersed and connected via a computer
network 1606, e.g., a LAN, a WAN, or a combination
thereof, etc. The computer network 1606 is an example of
the computer network 1320 (FIG. 13). An example of the
WAN includes the Internet and an example of the LAN
includes an Intranet. The user 1 operates a client device
1620-1, the user 2 operates another client device 1620-2, and
a user 3 operates yet another client device 1620-3.

[0228] In some embodiments, each client device 1620-1,
1620-2, and 1620-3 includes a central processing unit
(CPU), a display, and an input/output (I/O) interface.
Examples of each client device 1620-1, 1620-2, and 1620-3
include a personal computer (PC), a mobile phone, a net-
book, a tablet, a gaming system, a personal digital assistant
(PDA), the game console 1400 and a display device, the
HMD 1502 (FIG. 15), the game console 1400 and the HMD
1502, a desktop computer, a laptop computer, and a smart
television, etc. In some embodiments, the INSP 1602 rec-
ognizes a type of a client device and adjusts a communica-
tion method employed.

[0229] In some embodiments, an INSP 1602 delivers one
type of service, such as stock price updates, or a variety of
services such as broadcast media, news, sports, gaming, etc.
Additionally, the services offered by each INSP are dynamic,
that is, services can be added or taken away at any point in
time. Thus, an INSP providing a particular type of service to
a particular individual can change over time. For example,
the client device 1620-1 is served by an INSP in near
proximity to the client device 1620-1 while the client device
1620-1 is in a home town of the user 1, and client device
1620-1 is served by a different INSP when the user 1 travels
to a different city. The home-town INSP will transfer
requested information and data to the new INSP, such that
the information “follows” the client device 1620-1 to the
new city making the data closer to the client device 1620-1
and easier to access. In various embodiments, a master-
server relationship is established between a master INSP,
which manages the information for the client device 1620-1,
and a server INSP that interfaces directly with the client
device 1620-1 under control from the master INSP. In some
embodiments, data is transferred from one ISP to another
ISP as the client device 1620-1 moves around the world to
make the INSP in better position to service client device
1620-1 be the one that delivers these services.

[0230] The INSP 1602 includes an Application Service
Provider (ASP) 1608, which provides computer-based ser-
vices to customers over the computer network 1606. Soft-
ware offered using an ASP model is also sometimes called
on-demand software or software as a service (SaaS). A
simple form of providing access to a computer-based ser-
vice, e.g., customer relationship management, etc., is by
using a standard protocol, e.g., a hypertext transfer protocol
(HTTP), etc. The application software resides on a vendor’s
server and is accessed by each client device 1620-1, 1620-2,
and 1620-3 through a web browser using a hypertext markup

Jun. 23, 2022

language (HTML), etc., by a special purpose client software
provided by the vendor, and/or other remote interface, e.g.,
a thin client, etc.

[0231] Services delivered over a wide geographical area
often use cloud computing. Cloud computing is a style of
computing in which dynamically scalable and often virtu-
alized resources are provided as a service over the computer
network 1606. The users 1 through 3 do not need to be an
expert in the technology infrastructure in the “cloud” that
supports them. Cloud computing is divided, in some
embodiments, in different services, such as Infrastructure as
a Service (laaS), Platform as a Service (PaaS), and Software
as a Service (SaaS). Cloud computing services often provide
common business applications online that are accessed from
a web browser, while the software and data are stored on the
servers. The term cloud is used as a metaphor for the
computer network 1606, e.g., using servers, storage and
logic, etc., based on how the computer network 1606 is
depicted in computer network diagrams and is an abstraction
for the complex infrastructure it conceals.

[0232] Further, the INSP 1602 includes a game processing
provider (GPP) 1610, also sometime referred to herein as a
game processing server, which is used by the client devices
1620-1, 1620-2, and 1620-3 to play single and multiplayer
video games. Most video games played over the computer
network 1606 operate via a connection to a game server.
Typically, games use a dedicated server application that
collects data from the client devices 1620-1, 1620-2, and
1620-3 and distributes it to other clients that are operated by
other users. This is more efficient and effective than a
peer-to-peer arrangement, but a separate server is used to
host the server application. In some embodiments, the GPP
1610 establishes communication between the client devices
1620-1, 1620-2, and 1620-3, which exchange information
without further relying on the centralized GPP 1610.

[0233] Dedicated GPPs are servers which run indepen-
dently of a client. Such servers are usually run on dedicated
hardware located in data centers, providing more bandwidth
and dedicated processing power. Dedicated servers are a
method of hosting game servers for most PC-based multi-
player games. Massively multiplayer online games run on
dedicated servers usually hosted by the software company
that owns the game title, allowing them to control and
update content.

[0234] A broadcast processing server (BPS) 1612, some-
times referred to herein as a broadcast processing provider,
distributes audio or video signals to an audience. Broadcast-
ing to a very narrow range of audience is sometimes called
narrowcasting. A final leg of broadcast distribution is how a
signal gets to the client devices 1620-1, 1620-2, and 1620-3,
and the signal, in some embodiments, is distributed over the
air as with a radio station or a television station to an antenna
and receiver, or through a cable television or cable radio or
“wireless cable” via the station. The computer network 1606
also brings, in various embodiments, either radio or televi-
sion signals to the client devices 1620-1, 1620-2, and
1620-3, especially with multicasting allowing the signals
and bandwidth to be shared. Historically, broadcasts are
delimited, in several embodiments, by a geographic region,
e.g., national broadcasts, regional broadcasts, etc. However,
with the proliferation of high-speed Internet, broadcasts are
not defined by geographies as content can reach almost any
country in the world.

US 2022/0197609 Al

[0235] A storage service provider (SSP) 1614 provides
computer storage space and related management services.
The SSP 1614 also offers periodic backup and archiving. By
offering storage as a service, the client devices 1620-1,
1620-2, and 1620-3 use more storage compared to when
storage is not used as a service. Another major advantage is
that the SSP 1614 includes backup services and the client
devices 1620-1, 1620-2, and 1620-3 will not lose data if their
hard drives fail. Further, a plurality of SSPs, in some
embodiments, have total or partial copies of the data
received from the client devices 1620-1, 1620-2, and 1620-
3, allowing the client devices 1620-1, 1620-2, and 1620-3 to
access data in an efficient way independently of where the
client devices 1620-1, 1620-2, and 1620-3 are located or of
types of the clients. For example, the player accesses per-
sonal files via a home computer, as well as via a mobile
phone while the player is on the move.

[0236] A communications provider 1616 provides connec-
tivity to the client devices 1620-1, 1620-2, and 1620-3. One
kind of the communications provider 1616 is an Internet
service provider (ISP), which offers access to the computer
network 1606. The ISP connects the client devices 1620-1,
1620-2, and 1620-3 using a data transmission technology
appropriate for delivering Internet Protocol datagrams, such
as dial-up, digital subscriber line (DSL), cable modem, fiber,
wireless or dedicated high-speed interconnects. The com-
munications provider 1616 also provides, in some embodi-
ments, messaging services, such as e-mail, instant messag-
ing, and short message service (SMS) texting. Another type
of'a communications Provider is a network service provider
(NSP), which sells bandwidth or network access by provid-
ing direct backbone access to the computer network 1606.
Examples of network service providers include telecommu-
nications companies, data carriers, wireless communications
providers, Internet service providers, cable television opera-
tors offering high-speed Internet access, etc.

[0237] A data exchange 1618 interconnects the several
modules inside INSP 602 and connects these modules to the
client devices 1620-1, 1620-2, and 1620-3 via the computer
network 1606. The data exchange 1618 covers, in various
embodiments, a small area where all the modules of INSP
1602 are in close proximity, or covers a large geographic
area when the different modules are geographically dis-
persed. For example, the data exchange 1602 includes a fast
Gigabit Ethernet within a cabinet of a data center, or an
intercontinental virtual LAN.

[0238] In some embodiments, communication between
the server system 404 (FIG. 4A) and the client devices
1620-1 through 1620-3 may be facilitated using wireless
technologies. Such technologies may include, for example,
5G wireless communication technologies.

[0239] In one embodiment, a video game, such as the
legacy game N, as described herein, is executed either
locally on a gaming machine, a personal computer, or on a
server. In some cases, the video game is executed by one or
more servers of a data center. When the video game is
executed, some instances of the video game may be a
simulation of the video game. For example, the video game
may be executed by an environment or server that generates
a simulation of the video game. The simulation, on some
embodiments, is an instance of the video game. In other
embodiments, the simulation maybe produced by an emu-
lator. In either case, if the video game is represented as a
simulation, that simulation is capable of being executed to

Jun. 23, 2022

render interactive content that can be interactively streamed,
executed, and/or controlled by user input.

[0240] It should be noted that in various embodiments,
one or more features of some embodiments described herein
are combined with one or more features of one or more of
remaining embodiments described herein.

[0241] Embodiments described in the present disclosure
may be practiced with various computer system configura-
tions including hand-held devices, microprocessor systems,
microprocessor-based or programmable consumer electron-
ics, minicomputers, mainframe computers and the like. In
one implementation, the embodiments described in the
present disclosure are practiced in distributed computing
environments where tasks are performed by remote process-
ing devices that are linked through a wire-based or wireless
network.

[0242] With the above embodiments in mind, it should be
understood that, in one implementation, the embodiments
described in the present disclosure employ various com-
puter-implemented operations involving data stored in com-
puter systems. These operations are those requiring physical
manipulation of physical quantities. Any of the operations
described herein that form part of the embodiments
described in the present disclosure are useful machine
operations. Some embodiments described in the present
disclosure also relate to a device or an apparatus for per-
forming these operations. The apparatus is specially con-
structed for the required purpose, or the apparatus is a
general-purpose computer selectively activated or config-
ured by a computer program stored in the computer. In
particular, in one embodiment, various general-purpose
machines are used with computer programs written in accor-
dance with the teachings herein, or it may be more conve-
nient to construct a more specialized apparatus to perform
the required operations.

[0243] In an implementation, some embodiments
described in the present disclosure are embodied as com-
puter-readable code on a computer-readable medium. The
computer-readable medium is any data storage device that
stores data, which is thereafter read by a computer system.
Examples of the computer-readable medium include a hard
drive, a network-attached storage (NAS), a ROM, a RAM,
a CD-ROM, a CD-recordable (CD-R), a CD-rewritable
(CD-RW), a magnetic tape, an optical data storage device, a
non-optical data storage device, etc. As an example, a
computer-readable medium includes computer-readable tan-
gible medium distributed over a network-coupled computer
system so that the computer-readable code is stored and
executed in a distributed fashion.

[0244] Moreover, although some of the above-described
embodiments are described with respect to a gaming envi-
ronment, in some embodiments, instead of a game, other
environments, e.g., a video conferencing environment, etc.,
is used.

[0245] Although the method operations were described in
a specific order, it should be understood that other house-
keeping operations may be performed in between opera-
tions, or operations may be adjusted so that they occur at
slightly different times, or may be distributed in a system
which allows the occurrence of the processing operations at
various intervals associated with the processing, as long as
the processing of the overlay operations are performed in the
desired way.

US 2022/0197609 Al

[0246] Although the foregoing embodiments described in
the present disclosure have been described in some detail for
purposes of clarity of understanding, it will be apparent that
certain changes and modifications can be practiced within
the scope of the appended claims. Accordingly, the present
embodiments are to be considered as illustrative and not
restrictive, and the embodiments are not to be limited to the
details given herein, but may be modified within the scope
and equivalents of the appended claims.

1. A method for facilitating a play of a legacy game,
comprising:

receiving a user input during the play of the legacy game;

determining whether one or more blocks of code for

servicing the user input are cached;

accessing one or more instructions of a legacy game code

upon determining that the one or more blocks of code
are not cached;

compiling the one or more blocks of code from the one or

more instructions of the legacy game code;

caching the one or more blocks of code; and

executing the one or more blocks of code to display a

virtual environment.

2. The method of claim 1, wherein said compiling is
performed within a game console.

3. The method of claim 1, wherein said compiling is
performed within a server system.

4. The method of claim 1, wherein each of the one or more
blocks of code includes a source register address, an opera-
tion, and a destination register address, wherein when said
each of the one or more blocks of code is executed, data for
displaying the virtual environment is accessed from the
source register address, the operation is executed on the data
that is accessed from the source register address to generate
a result, and the result is stored at the destination register
address.

5. The method of claim 1, further comprising parsing the
legacy game code to identify the one or more instructions of
the legacy game code.

6. The method of claim 1, further comprising:

determining that instructions of the legacy game code are

compiled;

deleting the legacy game code in response to determining

that the instructions of the legacy game code are
compiled.

7. The method of claim 1, further comprising:

determining whether the legacy game code is accessed

within a pre-determined time period from a latest time
at which the legacy game code is accessed from a
legacy machine;

deleting the legacy game code in response to determining

that the legacy game code is not accessed within the
pre-determined time period from the latest time at
which the legacy game code is accessed from the
legacy machine.

8. The method of claim 1, further comprising:

generating a first validation result from the one or more

instructions upon said compiling the one or more
blocks of code;
examining one or more memory addresses associated with
the one or more instructions to determine whether the
one or more blocks of code are to be marked as invalid;

determining whether the one or more blocks of code are
to be executed;

Jun. 23, 2022

determining whether the one or more blocks of code are
marked as invalid upon determining that the one or
more blocks of code are to be executed;

examining the one or more memory addresses to generate

a second validation result from the one or more instruc-
tions stored at the one or more memory addresses upon
determining that the one or more blocks of code are
marked as invalid;

comparing the first validation result with the second

validation result to determine whether the one or more
blocks of code are invalid;
recompiling one or more additional blocks of code asso-
ciated with the one or more instructions upon deter-
mining that the one or more blocks of code are invalid;

executing the one or more additional blocks of code to
display an additional virtual environment.

9. The method of claim 1, wherein the legacy game code
cannot be executed in a first game console that includes a
64-bit processor and can be executed in a second game
console that includes a 32-bit processor.

10. The method of claim 9, wherein the one or more
blocks can be executed in the first game console.

11. A computing device for facilitating a play of a legacy
game, comprising:

a processor configured to receive a user input during the

play of the legacy game; and

a cache coupled to the processor; and

a memory device coupled to the processor,

wherein the processor is configured to determine whether

one or more blocks of code for servicing the user input
are stored in the cache,

wherein the processor is configured to access, from the

memory device, one or more instructions of a legacy
game code upon determining that the one or more
blocks of code are not stored in the cache,

wherein the processor is configured to compile the one or

more blocks of code from the one or more instructions
of the legacy game code,

wherein the processor is configured to store the one or

more blocks of code in the cache, and

wherein the processor is configured to execute the one or

more blocks of code to display a virtual environment.

12. The computing device of claim 11, wherein each of
the one or more blocks of code includes a source register
address, an operation, and a destination register address,
wherein when said each of the one or more blocks of code
is executed, data for displaying the virtual environment is
accessed from the source register address, the operation is
executed on the data that is accessed from the source register
address to generate a result, and the result is stored at the
destination register address.

13. The computing device of claim 11, wherein the
processor is configured to parse the legacy game code to
identify the one or more instructions of the legacy game
code.

14. The computing device of claim 11, wherein the
processor is configured to:

generate a first validation result from the one or more

instructions upon said compiling the one or more
blocks of code;

examine one or more memory addresses associated with

the one or more instructions to determine whether the
one or more blocks of code are to be marked as invalid;

US 2022/0197609 Al

determine whether the one or more blocks of code are to
be executed;

determine whether the one or more blocks of code are
marked as invalid upon determining that the one or
more blocks of code are to be executed;

examine the one or more memory addresses to generate a
second validation result from the one or more instruc-
tions;

compare the first validation result with the second vali-
dation result to determine whether the one or more
blocks of code are invalid;

recompile one or more additional blocks of code associ-
ated with the one or more instructions upon determin-
ing that the one or more blocks of code are invalid;

execute the one or more additional blocks of code to
display an additional virtual environment.

15. The computing device of claim 11, wherein the
processor is a 64-bit processor, wherein the legacy game
code cannot be executed by the processor and can be
executed in a computing device that includes a 32-bit
processor.

16. A method comprising:

generating a first validation result from one or more
instructions of a legacy game code, wherein the one or
more instructions of the legacy game code are associ-
ated with one or more blocks of code;

examining one or more memory addresses associated with
the one or more instructions to determine whether the
one or more blocks of code are to be marked as invalid;

determining whether the one or more blocks of code are
to be executed;

Jun. 23, 2022

determining whether the one or more blocks of code are
marked as invalid upon determining that the one or
more blocks of code are to be executed;

examining the one or more memory addresses to generate

a second validation result from the one or more instruc-
tions;

comparing the first validation result with the second

validation result to determine whether the one or more
blocks of code are invalid; and

recompiling one or more additional blocks of code asso-

ciated with the one or more instructions upon deter-
mining that the one or more blocks of code are invalid;
and

executing the one or more additional blocks of code to

display a virtual environment.

17. The method of claim 16, wherein each of the one or
more additional blocks of code includes a source register
address, an operation, and a destination register address,
wherein when said each of the one or more additional blocks
of code is executed, data for displaying the virtual environ-
ment is accessed from the source register address, the
operation is executed on the data that is accessed from the
source register address to generate a result, and the result is
stored at the destination register address.

18. The method of claim 16, wherein the legacy game
code cannot be executed in a first game console that includes
a 64-bit processor and can be executed in a second game
console that includes a 32-bit processor.

19. The method of claim 18, wherein the one or more
blocks of code can be executed in the first game console.

20. The method of claim 16, further comprising storing
the first validation result within one or more memory
registers having the one or more blocks of code.

#* #* #* #* #*

